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ABSTRACT

Spoken Language Models (SLMs) are designed to take speech inputs and produce
spoken responses. However, current SLMs lack the ability to perform an internal,
unspoken thinking process before responding. In contrast, humans typically engage
in complex mental reasoning internally, enabling them to communicate ideas clearly
and concisely. Thus, integrating an unspoken thought process into SLMs is highly
desirable. While naively generating a complete chain-of-thought (CoT) reasoning
before starting to talk can enable thinking for SLMs, this induces additional latency
for the speech response, as the CoT reasoning can be arbitrarily long. To solve
this issue, we propose STITCH, a novel generation method that alternates between
the generation of unspoken reasoning chunks and spoken response chunks. Since
the audio duration of a chunk of spoken response is much longer than the time to
generate the tokens in a chunk of spoken response, we use the remaining free time
to generate the unspoken reasoning tokens. When a chunk of audio is played to the
user, the model continues to generate the next unspoken reasoning chunk, achieving
simultaneous thinking and talking. Remarkably, STITCH matches the latency
of baselines that cannot generate unspoken CoT by design while outperforming
those baselines by 15% on math reasoning datasets; STITCH also performs equally
well on non-reasoning datasets as those baseline models. Some animations and
demonstrations are on the project page: https://d223302.github.io/
STITCH.
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Figure 1: The timing diagram during generation for STITCH-R. The model first generates the first
Nreason CoT reasoning tokens, Ntext text tokens, and Nspeech speech tokens. Once the first Nspeech
speech tokens are generated, the speech decoder synthesizes the output audio that lasts tchunk seconds.
When the speech waveform is synthesized and played to the user, the SLM uses this time to generate
the next Nreason reasoning tokens, Ntext text tokens, and Nspeech speech tokens and synthesize the
speech output. The duration tchunk is much longer than the time for generating the text tokens and
speech tokens corresponding to Si, and we use the remaining time to generate the reasoning tokens.
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1 INTRODUCTION

Spoken language models (SLMs) can take speech inputs and generate speech outputs (OpenAI,
2024b; Défossez et al., 2024; Arora et al., 2025). SLMs generate speech by emitting some speech
tokens, discrete tokens that encode the information in speech (Défossez et al., 2023; Zhang et al.,
2024), which will be converted into an audio waveform by a speech decoder. Most SLMs are trained
from a backbone text-based LLM (Défossez et al., 2024; Ding et al., 2025); we can obtain an SLM
by teaching the backbone LLM to understand speech input and generate the speech tokens as the
output (Xiezhifei, 2024; Fang et al., 2025a).

Teaching the backbone LLM to directly generate speech tokens is challenging, as the LLM is
originally trained to predict text tokens, so the speech tokens are completely new for the LLM
backbone. To make SLMs better predict the speech tokens, current mainstream methods first generate
the text tokens before generating the speech tokens (Chen et al., 2024; Zeng et al., 2024; Nguyen
et al., 2025). By design, those text tokens and the speech tokens are aligned, in the sense that the text
tokens correspond to the semantic content of the speech tokens.

While the aligned text-speech generation pipeline makes it easier to generate the speech response,
these SLMs directly generate the output text-speech tokens without any inner thinking process, though
explicitly modeling such reasoning steps has been shown helpful in text generation tasks (OpenAI,
2024c; Guo et al., 2025). Humans can perform complex internal reasoning before we speak: we
disambiguate questions, recall facts, manipulate variables, and then verbalize only the polished
answer. Intuitively, this unspoken internal thinking helps improve the accuracy and coherence of our
spoken content. However, verbalizing these internal thoughts can make communication confusing
and unnecessarily lengthy. Thus, it is desirable to enable SLMs a similar ability to think longer and
silently before speaking out.

A naive way to do so is to teach SLMs to generate an unspoken chain-of-thought (CoT) reasoning (Wei
et al., 2022) in text, and then generate the spoken responses based on the CoT reasoning. In this way,
we can benefit from the CoT reasoning without making the spoken response overly long. While this
does improve the speech output quality, as validated by our experiments in Section 5, the speech
responses need to wait until the full text CoT is generated, creating an uncontrollable latency for the
speech output.

To reduce and remove this latency, we propose STITCH: Simultaneous Thinking and Talking with
Chunked Reasoning. STITCH alternately generates unspoken reasoning chunks and spoken response
chunks, allowing the spoken responses to condition on some thinking process. Since the audio
duration of a chunk of spoken response is much longer than the time to generate the tokens in a
chunk of spoken response, we use the remaining free time to generate the unspoken reasoning tokens.
When a chunk of audio is played to the user, STITCH keeps generating the next unspoken reasoning
chunk, achieving simultaneous thinking and talking. STITCH-S, a variant of STITCH, has the same
latency as the baseline models that cannot generate unspoken reasoning by design, while significantly
outperforming those baselines on math reasoning datasets.

We summarize our contributions as follows:

1. We propose STITCH, an SLM generation pipeline that outputs unspoken reasoning chunks
and spoken response chunks alternately. To the best of our knowledge, we are the first to
introduce the unspoken thinking process to SLMs.

2. STITCH-S, while improving the generation with unspoken reasoning, has a latency the same
as an SLM that does not generate text reasoning by design.

3. On five math QA datasets, STITCH consistently outperforms the baseline models that cannot
reason with text CoT.

2 RELATED WORK

2.1 SPOKEN LANGUAGE MODELS

Our paper improves SLMs by generating text reasoning before generating the speech output. Current
SLMs first generate some speech tokens, and the speech tokens will be synthesized into a waveform
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by the speech decoder. In this section, we recap how existing SLMs generate speech tokens. The
mainstream SLMs nowadays adopt two types of speech generation methods: (1) Interleaved text-
speech tokens (Zeng et al., 2024; Li et al., 2025b) and the (2) Thinker-Talker architecture (Xu et al.,
2025; Ding et al., 2025; Fang et al., 2025b).

In the interleaved decoding paradigm, the SLM backbone model generates a chunk of text tokens
and a chunk of speech tokens alternately. The text tokens serve as guidance for future speech tokens
by transcribing what the speech token will say. For example, GLM-4-Voice (Zeng et al., 2024)
interleaves between generating Ntext = 13 text tokens and Nspeech = 26 speech tokens. After a chunk
of speech token is generated, it is immediately synthesized into audio by the speech decoder and
streamed to the user, enabling low latency and real-time interaction. A figurative illustration of this
output format is shown in Figure 2(a). When concatenating the chunk of text tokens, they should
correspond to the transcription of the speech tokens. The ratio of the text tokens and speech tokens is
carefully selected such that the text tokens are always faster than the speech tokens to ensure that
the content of the speech tokens has already appeared in previous text tokens. Once all the text
tokens are generated, the model will continue to generate the remaining speech tokens.

The thinker-talker SLM uses a model, called the thinker, to take speech input and generate text
tokens, and uses another model, called the talker, to convert the text tokens and/or their continuous
representations into speech tokens (Xu et al., 2025; Ding et al., 2025; Fang et al., 2025b). The talker
model functions like a Text-to-Speech (TTS) model that converts the textual output from the thinker
into speech tokens, and the output by the thinker and talker will be highly aligned in their semantics,
while there may be slight differences.

The text-speech interleaved SLMs and thinker-talker SLMs differ in their architecture, but they share
a similarity: they generate text and then the speech, and the text is highly aligned with the speech. In
this paper, we focus on enabling SLMs to generate an unspoken thinking process while speaking.

2.2 REASONING FOR AUDIO LLMS AND SLMS

While reasoning, also sometimes referred to as thinking, is widely explored in text-only LLMs (Ope-
nAI, 2024c; Wu et al., 2024; Guo et al., 2025; Hong et al., 2025), reasoning is only included in audio
LLMs recently. Audio LLMs are multimodal LLMs that can take audio and speech as input, but
they cannot generate speech outputs (Changli et al., 2023; Chu et al., 2024; Xu et al., 2025; Lu et al.,
2025); this marks a significant difference from SLMs studied in our paper. Wen et al. (2025) and
Li et al. (2025a) explore using GRPO (Shao et al., 2024) to fine-tune audio LLMs and show that
reinforcement learning can improve reasoning ability in audio LLMs on audio question answering.
Xie et al. (2025) propose an audio CoT reasoning dataset and fine-tune a model to enable the long
CoT reasoning ability of audio LLMs. However, no prior work introduces unspoken reasoning ability
to SLMs.

Only recently, Gemeni-2.5-flash-native-audio (Google, 2025) includes a thinking process in the audio-
in-audio-out mode. After Gemini-2.5 receives the user’s speech input, it can optionally generate a
thinking process in text and then give the speech response. However, since the model is a black-box,
it is unclear how the thinking process is done. Based on our own experience, the model first generate
a complete text CoT reasoning and starts to generate the speech response, which is different from the
simultaneous thinking and talking proposed in our paper.

3 METHOD: SIMULTANEOUS THINKING AND TALKING WITH CHUNKED
REASONING

While current SLMs also include some textual inner monologue (Défossez et al., 2024) or thinking (Xu
et al., 2025) (as in thinker-talker) before generating the speech tokens, these text tokens simply
transcribe what the model will say next. In other words, they do not generate unspoken reasoning
before speaking. In this paper, we aim to improve the SLMs by generating some unspoken text
reasoning before generating the speech responses (including the text and speech tokens).

Our proposed concept can be applied to both the interleaved and thinker-talker SLMs, but we adopt
the interleaved SLMs in this paper for the following two reasons: (1) The interleaved SLM only
contains a single backbone model to generate the text and speech tokens, simplifying the model
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STITCH-S

(a) Text Speech Text Speech Text Speech

(b) Text SpeechReasoning Text Speech Text Speech

(d) Text Speech Reasoning Text Speech Reasoning Text Speech

(c) Reasoning Text Speech Reasoning Text Speech Reasoning Text Speech

GLM-4-Voice

TBS

STITCH-R

Figure 2: Different generation method explored in this paper. The arrow represents the timeline
for the SLM to generate the tokens; this timeline should not be confused with the timeline that the
end user receives the audio, i.e., the upper timeline in Figure 1. We plot tokens of the same type
in a chunk using the same color. (a) GLM-4-Voice: Interleaving between text and speech token
chunks (Section 2.1). This is the design of the original interleaved SLMs. (b) TBS: Generating a
complete reasoning span and then interleaving between text and speech token chunks (Section 3.1).
(c) STITCH-R: Alternating between reasoning token chunks, text token chunks, and speech token
chunks (Section 3.2). (d) STITCH-S: Alternating between text token chunks, speech token chunks,
and reasoning token chunks (Section 3.3).

architecture. (2) Wu et al. (2025) show that the thinker-talker SLM requires careful tuning to make it
properly generate well-aligned text and speech output, and the interleaved SLMs do not have this
drawback.

To unify the wording, we will use reasoning tokens to refer to the unspoken reasoning (in text),
text tokens to refer to the original text tokens of the interleaved SLMs, and speech tokens to refer
to the speech tokens. Text tokens and speech tokens are the output of interleaved SLMs from prior
works (Zeng et al., 2024), and the reasoning tokens are introduced in this paper. Both text tokens and
reasoning tokens are texts, while they differ in their function: reasoning tokens are for the unspoken
thinking process, and text tokens are the transcriptions of the spoken output.

3.1 A TRIVIAL METHOD: THINK BEFORE SPEAKING IN SPEECH (TBS)

Before introducing STITCH, we start from a trivial baseline method that introduces the thinking
process to SLMs: Thinking in text Before Speaking in speech (TBS). Introducing TBS can help us
understand the motivation and design of STITCH later. In TBS, given a user query in speech, the
model first generates a complete trace of reasoning span. A complete reasoning span is enclosed
by two special tokens [SOR] and [EOR], denoting the start and end of the reasoning span. The
[EOR] token lets the model know that the reasoning has finished and it needs to start generating the
tokens for the spoken response, including the text tokens and the speech tokens. The text tokens and
the speech tokens are generated in an interleaved manner, following the original design of interleaved
SLMs, with Ntext and Nspeech alternating with each other.

To teach SLMs to operate in TBS, we construct the training data DTBS where each training instance
has the form (x, z,y), x is the speech token sequence of the user input, z is the reasoning token
sequence, and y = [t1 ◦ s1 ◦ t2 ◦ s2, · · · ] is the token sequence for the speech output that interleaves
between Ntext text tokens (tj) and Nspeech tokens (sj)1; ◦ denotes concatenating two token sequences.
We defer how we construct DTBS from existing datasets until Section 4.1. A figurative illustration of
the target output for TBS is in Figure 2(b).

During training, given an input x, we train the SLM to predict the reasoning tokens z and then the
interleaved text-speech tokens y using the standard cross-entropy loss.

3.2 STITCH-R: SIMULTANEOUS THINKING AND TALKING WITH REASONING FIRST

While inserting text reasoning before the speech response in TBS improves the quality of the speech
response, the speech response can only be generated after the full reasoning has been generated.
As later shown in Table 2, the reasoning by TBS can be long, creating significant latency before

1The last text token chunk may be less than Ntext while the last speech token span can have more than Nspeech
tokens.
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generating the speech response. To resolve the latency issue, we draw inspiration from the fact that
humans can think while speaking and propose STITCH-R.

STITCH-R realizes this ”thinking when speaking” by alternating fixed-length (Nreason) partial reason-
ing spans, fixed-length (Ntext) text token spans, and fixed-length (Nspeech) speech token spans. The
partial reasoning spans are for inner thinking, while the text and speech token spans are for the spoken
response. Stitching the partial reasoning spans together will form a complete CoT reasoning. A
figurative illustration of the output of STITCH-R is shown in Figure 2(c), and some samples generated
by STITCH-R are shown in Table 3. The ”R” in STITCH-R stands for ”reasoning first” since it
generates a partial reasoning chunk before speaking; this is used to distinguish the ”speaking first”
STITCH-S that will be introduced in Section 3.3.

We explain how simultaneous thinking and speaking is achieved by STITCH-R, which can be most
easily understood with Figure 1. After the SLM receives the speech input, it first generates Nreason
reasoning tokens, Ntext text tokens, and Nspeech speech tokens for the first audio output chunk S1.
Those speech tokens will be passed through the speech decoder to synthesize the audio with duration
tchunk seconds and played to the user. When synthesizing the speech waveform and playing the audio
for S1, the SLM continues to generate the next Nreason reasoning tokens; this is where simultaneous
thinking and speaking happens. After generating the second reasoning chunk, the model continues
to generate Ntext text tokens, and Nspeech speech tokens for the next audio chunk S2. As long as the
time to generate Nreason +Ntext +Nspeech tokens, denoted as ttoken is less than tchunk, the next audio
chunk S2 can be played seaminglessly after the previous audio chunk S1.

Let’s understand with some concrete numbers. On an A100-80G GPU, our model generate around 80
tokens per second using vLLM (Kwon et al., 2023), and the duration of the audio for Nspeech = 26
speech tokens is around tchunk = 2 seconds, so we can generate around 160 tokens in tchunk = 2
seconds. The number of text tokens and speech tokens sums to Ntext +Nspeech = 13 + 26 = 39, so
we have time to generate at most 80× 2− 39 = 121 reasoning tokens.2

Each partial reasoning chunk is enclosed in two special tokens: [SOPR] (start of partial reasoning)
and [EOPR] (end of partial reasoning). If the reasoning chunk is fully generated, an additional
[EOR] is used to denote the end of the full reasoning CoT.

To construct the training data for STITCH-R, we simply split the full reasoning CoT z in DTBS into
chunks with Nreason tokens {z1, z2, · · · }, where each zi except the last chunk has Nreason tokens. Next,
we interleave those chunks with the interleaved text-speech token sequence y = [t1 ◦ s1 ◦ t2 ◦ s2, · · · ]
to create the interleaved data of the form [z1 ◦t1 ◦s1 ◦z2 ◦t2 ◦s2 ◦· · · ], as shown in Figure 2(c). If the
number of the reasoning span is more than the number of text spans, this indicates that the reasoning
token spans think slower than the text token spans, so we remove the sample from the training data.3
The model is fine-tuned to auto-regressively predict the interleaved reasoning-text-speech token spans
using standard language modeling cross-entropy loss.

3.3 STITCH-S: SIMULTANEOUS THINKING AND TALKING WITH SPEAKING FIRST

STITCH-R can have a latency shorter than that of TBS, since STITCH-R only needs to wait at
most Nreason tokens before generating the text and speech tokens. However, compared with the
original text-speech interleaved SLMs that directly generate the text and speech tokens for the spoken
response, STITCH-R still needs to wait for Nreason reasoning tokens.

To fully remove the latency for waiting for the first partial reasoning span, we propose an alternative
generative pipeline that directly starts to generate the text and speech token chunks and then generates
the first reasoning chunk; the model continues to interleave this generation pattern. We call this
STITCH-S since it generates a speech response first, and an illustrative figure is shown in Figure 2(d).

To construct the training data for STITCH-S, we similarly split the full reasoning z in DTBS into
chunks with Nreason tokens, and insert a text token chunk of length Ntext and a speech token chunk
of length Nspeech before each reasoning span. Following previous notation, the target output for

2Since the token generation and audio synthesis can be run in parallel, we do not need to consider tsyn, the
time to synthesize the audio, as long as tsyn < tchunk.

3The number of text spans is always less than or equal to the number of speech spans by design. This can be
done by properly selecting the ratio between Ntext and Nspeech.

5



Preprint. Work in progress.

STITCH-S looks like [t1 ◦ s1 ◦ z1 ◦ t2 ◦ s2 ◦ z2 ◦ t3 ◦ s3, · · · ]. If a training instance’s number of
reasoning chunks is more than the number of text chunks, the above data construction pipeline will
result in an instance that has a reasoning span after the text chunks are finished, which does not make
sense since the thinking process hasn’t ended while the content to be spoken is finished. We remove
this kind of sample from the training dataset.

4 EXPERIMENT SETUP

4.1 TRAINING

We fine-tune a separate model for TBS, STITCH-R, and STITCH-S from GLM-4-Voice-9B (Zeng
et al., 2024). During fine-tuning, we fully fine-tune the backbone transformer model (Vaswani et al.,
2017) of GLM-4-Voice and freeze the speech encoder (Zeng et al., 2025) and speech decoder (Du
et al., 2024; Kong et al., 2020). Fine-tuning using LlamaFactory (Zheng et al., 2024) takes 17 hours
on 32 A100-80GB GPUs. The detailed hyperparameters for fine-tuning are listed in Appendix B.

We include three types of tasks in the training data: general dialogue dataset (VoiceAssis-
tant400K (Xiezhifei, 2024)), mathematical reasoning (Tulu-3-Persona Math, Tulu-3-Persona-Math-
Grade, and Tulu-3-Persona-Algebra (Lambert et al., 2024)), and knowledge-intensive question
answering (Natural Question (Kwiatkowski et al., 2019) and TriviaQA (Joshi et al., 2017)).

We introduce how to construct DTBS, the training data for TBS, while the training data for STITCH-R
and STITCH-S can be constructed from DTBS following the procedures described in Section 3.2 and
3.3.

To train TBS, each sample in the dataset needs to have the spoken query x, text reasoning z, and
the spoken responses y. For VoiceAssistant400K, which is already a speech-to-speech dialogue
dataset, we generate the text reasoning using GPT-4o. For mathematical reasoning datasets, which
only contain a question and its long answer in text, we synthesize the question audio x using GPT-
4o-mini-TTS (OpenAI, 2024a), use the ground truth long answer as the text CoT z, and rewrite the
long answer and synthesize its audio to form the spoken response y. For knowledge-intensive QA
datasets, which are also in text form, we synthesize the question audio x using GPT-4o-mini-TTS,
generate the text CoT z with GPT-4o, and rewrite the answer and synthesize its audio to form the
spoken response y. All the prompts used for constructing the datasets are in Appendix A.1. The full
training dataset contains around 400K instances.

4.2 EVALUATION

We include both reasoning and non-reasoning datasets for evaluation. We use the reasoning datasets
to evaluate whether generating reasoning before responding in speech can improve the spoken answer
quality for tasks that require reasoning. We include five math reasoning datasets: AddSub (Hosseini
et al., 2014), SinglEq (Koncel-Kedziorski et al., 2015), MultiArith (Roy & Roth, 2015), SVAMP (Patel
et al., 2021), and GSM8K (Cobbe et al., 2021), which are commonly used to evaluate the mathematical
reasoning ability of LLMs (Wei et al., 2022; Kojima et al., 2022; Wang et al., 2023). The questions
and answers in these datasets are not too difficult and can be described clearly in speech, compared
to more challenging math datasets like AIME (Balunović et al., 2025). Since these datasets are
originally in textual form, we synthesize the question audio using GPT-4o-mini-TTS.

For non-reasoning datasets, we include three knowledge-intensive QA datasets (Llama Ques-
tions (Nachmani et al., 2024), TriviaQA (Joshi et al., 2017), and WebQuestions (Berant et al.,
2013)) and AlpacaEval (Li et al., 2023), a dialogue dataset, from OpenAudioBench (Li et al., 2025b).
We use these datasets to understand whether generating unspoken reasoning before responding in
speech has any impact on non-reasoning datasets. The statistics of the datasets are in Table 5 in the
Appendix.

For all reasoning datasets and knowledge-intensive QA datasets, we evaluate the SLM’s performance
using the accuracy. To calculate the accuracy, we use GPT-4o to judge whether the SLM’s prediction
matches the ground truth answer. For AlpacaEval, we follow the setting in OpenAudioBench to use
LLM-as-a-judge (Chiang & Lee, 2023; Liu et al., 2023; Zheng et al., 2023) to rate the response from
1 to 10, and report the GPT-4o-score scaled to 10 and 100, where higher is better.
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When evaluating the responses from SLMs, we use the text tokens for evaluation. Alternatively,
we can synthesize the speech waveform from the speech tokens, transcribe the speech into their
transcriptions, and evaluate those transcriptions. However, since the SLM’s text tokens are designed
to align with the speech output, we only report the performance of the text tokens in the main
content. The general trend observed in the following experiment results holds when we evaluate the
transcription of the speech output, while the latter has a slight performance drop of around 3% to 6%,
as shown in Table 6 in the Appendix.

4.3 COMPARED MODELS

We compare six models, which are based on the same base model: GLM-4-Voice, an interleaved
SLM. GLM-4-Voice has an Ntext = 13 and Nspeech = 26. All the models we use follow the Ntext and
Nspeech in GLM-4-Voice.

(1) GLM-4-Voice: The model takes speech input and generates interleaved text-speech tokens. This
model cannot generate unspoken reasoning by design.
(2) No reasoning: We fine-tune GLM-4-Voice on a dataset without reasoning, Dno-reason. Each
instance in Dno-reason has the form (x,y), which is constructed from DTBS by removing the text
reasoning z. The model is trained to predict interleaved text-speech tokens y based on the input x.
(3) TBS: see Section 3.1.
(4) Mix reasoning: We mix half of Dno-reason and half of DTBS to fine-tune GLM-4-Voice. We use
a system prompt to control whether the model should generate reasoning before generating the
interleaved text-speech tokens. This allows us to control the model’s behavior during inference.
By comparing the performance of this model when inference with and without reasoning, we can
understand if unspoken reasoning really helps SLM’s speech output.
(5) STITCH-R: see Section 3.2.
(6) STITCH-S: see Section 3.3.

During training, we set Nreason = 100 for STITCH-R and STITCH-S. In Section 3.2, we have derived
that the length of the reasoning token can be at most 121 tokens when running on an A100-80G GPU,
so we select Nreason = 100. We do not compare with other SLMs as they use different training data
and have distinct model architectures, making the comparison with our models less meaningful.

5 MAIN RESULTS

We present the main results in Table 1. We summarize several key observations as follows:

TBS significantly outperforms the baselines without reasoning on math QA. In row 4, TBS
achieves an average accuracy of 79.12%, outperforming GLM-4-Voice (row 1) by 26.04% and the
”no reasoning” model (row 2) by 16.14%. The most significant performance gap is GSM8K, which is
the most difficult dataset, where the accuracy of TBS almost doubles compared to the two baselines
without reasoning. This shows that reasoning before speaking can help the SLM respond better to
questions that require reasoning.

Reasoning before speaking is better than no reasoning before speaking, even if the training
data is the same. The strong result of TBS, compared with the ”no reasoning” baseline may raise
a question on whether TBS is winning because the training data includes additional reasoning z,
which are not included in the training data for the ”no reasoning” baseline. This question can be
answered by comparing the results of the ”mix reasoning” model with and without text reasoning
before generating the speech response (row 3 vs. row 5). Since the two different inference modes
use the same mix reasoning model, the performance difference can be attributed to the reasoning
before the spoken response during inference. On average, reasoning before speaking (row 5) obtains
an accuracy of 77.47%, outperforming not using reasoning by more than 10% (row 3). For the
most difficult GSM8K, the improvement of using reasoning is 24.9%. The results again confirm the
importance of generating reasoning before the speech response for reasoning tasks.

STITCH-R (row 6) shows almost no performance drop on average. STITCH-R alternates
between partial text reasoning and text-speech tokens. While the reasoning is split by text-speech
tokens, the average performance only drops by 0.42% compared to TBS. In Table 2, we report the
average number of reasoning tokens on three testing datasets. Both TBS and STITCH-R generate 150
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(a) The accuracy on math QA.

Id Config Latency
Use Reasoning Datasets

Avg.
Train Infer. AddSub MultiArith SinglEq SVAMP GSM8K

Baselines

1 GLM-4-Voice Ntext +Nspeech – ✘ 59.42 62.00 71.00 44.00 29.00 53.08
2 No reasoning Ntext +Nspeech ✘ ✘ 66.06 70.69 77.98 64.43 35.73 62.98
3 Mix reasoning Ntext +Nspeech ✔+✘ ✘ 69.72 79.31 87.16 63.55 37.33 67.41

Full Reasoning before Speaking

4 TBS Nfull +Ntext +Nspeech ✔ ✔ 79.82 85.63 89.91 75.29 64.94 79.12
5 Mix reasoning Nfull +Ntext +Nspeech ✔+✘ ✔ 76.15 89.08 88.99 70.90 62.23 77.47

Proposed Methods: Simultaneous Thinking and Speaking

6 STITCH-R Nreason +Ntext +Nspeech ✔ ✔ 78.90 88.51 93.58 73.83 58.70 78.70
7 STITCH-S Ntext +Nspeech ✔ ✔ 81.65 87.93 91.74 72.15 56.72 78.04

(b) The performance on non-reasoning tasks. For factual QA, including Llama Question, TriviaQA, and
WebQuestion, we report the accuracy. For AlpacaEval, we report the GPT-4o score.

Id. Config Use Reasoning Datasets Avg.Train Infer. Llama Question TriviaQA WebQuestion AlpacaEval

Inference without Reasoning

1 GLM-4-Voice – ✘ 74.25 47.10 50.95 48.59 55.22
2 No reasoning ✘ ✘ 73.33 46.00 47.80 53.62 55.19
3 Mix reasoning ✔+✘ ✘ 73.33 47.80 48.00 54.77 55.98

Full Reasoning before Speaking

4 TBS ✔ ✔ 74.33 51.50 52.15 56.33 58.58
5 Mix reasoning ✔+✘ ✔ 69.67 48.80 50.75 56.03 56.31

Proposed Methods: Simultaneous Thinking and Speaking

6 STITCH-R ✔ ✔ 70.00 49.60 50.25 54.02 55.97
7 STITCH-S ✔ ✔ 73.33 50.00 50.15 54.62 57.03

Table 1: The performance on math reasoning dataset (1a) and non-reasoning datasets (1b). The
latency column reports how many tokens the SLM should generate until the first chunk of speech
can be synthesized, where Nfull denotes the uncontrollable length of the full reasoning. The ”use
reasoning” columns denote whether text reasoning z is in the training data or is generated during
inference.

to 300 reasoning tokens for math reasoning datasets on average, but STITCH-R only needs to wait
for the first Ntoken = 100 reasoning tokens before starting to generate the first chunk of the speech
output, yielding a smaller latency for STITCH-R. Importantly, this speedup comes with almost no
loss in accuracy. Still, on a more difficult dataset (GSM8K), the performance drop is larger, but it still
significantly outperforms the non-reasoning baselines (row 1 and row 2).

STITCH-S shows almost no performance drop on average without adding any inference latency.
Remarkably, STITCH-S shows an average accuracy of 78.04% (row 7), slightly lower than TBS by
1.08% (row 4), but is still much better than the ”no reasoning” baseline by 15.06% (row 2). We see
a larger performance drop in GSM8K around 8% compared with TBS, but again, still significantly
outperforms no reasoning baseline by 19.99%. Recall that the first package latency of STITCH-S is
exactly the same as the baselines that do not generate text reasoning; both of them only need to wait
for Ntext +Nspeech tokens before synthesizing the speech waveform. This exciting result indicates
that we can improve the answer quality without sacrificing any inference latency.

On non-reasoning datasets, reasoning models perform comparably well or slightly outperform
non-reasoning baselines. In Table 1b, we report the performance on the non-reasoning datasets. We
find that TBS (row 4), STITCH-R (row 6), and STITCH-S (row 7) all have performance comparable
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Token Count Quality Assesment

Datasets MultiArith GSM8K TriviaQA MultiArith GSM8K MultiArith GSM8K
Metrics Reason Trans Reason Trans Reason Trans UTMOSv2 GPT-4o-score

GLM-4-Voice – 66.17 – 92.38 – 51.67 3.10 3.05 4.60 4.28
No reasoning – 45.67 – 60.22 – 28.64 3.15 3.13 4.91 4.49

TBS 178.95 45.09 360.04 70.49 68.03 27.55 3.14 3.16 4.90 4.78
STITCH-R 157.32 49.77 322.40 74.36 67.56 27.65 3.10 3.12 4.94 4.74
STITCH-S 203.28 80.87 334.71 61.85 69.45 28.21 3.17 3.11 4.88 4.66

Table 2: Left: The average number of total reasoning tokens (summed over partial reasoning spans
for STITCH-R and STITCH-S) and the text tokens. Right: The quality scores of the speech responses.

to or better than the original GLM-4-Voice (row 1) and the no reasoning baseline (row 2). This
shows that fine-tuning SLMs to think before responding in text does not harm the performance on
non-reasoning datasets.

Generating text reasoning before generating the speech responses does not harm the perceptual
quality and the fluency of the speech response. In the rightmost block in Table 2, we report some
quality assessment of the responses generated by the SLMs. We report (1) the perceptual quality
of the speech response evaluated by UTMOSv2 (Baba et al., 2024), an automatic MOS evaluation
model, and (2) the fluency score of the text tokens judged by GPT-4o (Chiang & Lee, 2023). The
fluency score focuses on whether the text tokens form a fluent narrative. Both metrics range from 1 to
5, with 5 being the best. We observe that all fine-tuned models have a similar UTMOSv2 score over
3, similar to the original GLM-4-Voice, indicating that our fine-tuning does not harm the perceptual
quality of the speech output. We also observe that the fluency scores for STITCH-R and STITCH-S
are high, indicating that alternating between the text reasoning token spans and the text-speech token
spans does not harm the fluency of the text tokens.

6 ADJUSTING THE LENGTH OF THE REASONING CHUNK DURING INFERENCE

During training, we fix Ntoken, the number of tokens in each partial reasoning chunk, to 100 tokens.
In this section, we ask whether we can adjust N ′

token at test time without retraining the model.
One might want to adjust N ′

token at test time if the hardware is slower and the time to generate
Ntoken +Ntext +Nspeech tokens may exceed the duration tchunk of the audio for Nspeech tokens. In this
case, the model deployer may want to reduce N ′

token during inference time to ensure that generating
the N ′

token +Ntext +Nspeech do not exceeds the duration tchunk. Thus, it would be interesting to see if
we can train a single model with a fixed Ntoken and vary N ′

token during inference.

Recall that each reasoning chunk terminates with a special token [EOPR]. To adjust the length of
the reasoning chunk to N ′

token ≤ Ntoken, during the inference time, we can append [EOPR] after
N ′

token reasoning tokens are generated. Once the model sees [EOPR], it will cease generating the
reasoning tokens and switch to generating text-speech interleaved tokens. We intervene in the model’s
generation by the above process whenever the model generates a reasoning chunk until the [EOR]
token is generated.

We vary the number of N ′
token from 60 to 100 with a 10 increment on the math reasoning datasets for

STITCH-R and STITCH-S. The results are shown in Figure 3a and 3b. We see that the accuracy on all
tasks mostly rises when increasing N ′

token from 60 to 100. While the performance of N ′
token < 100

is mostly worse than the performance of Ntoken = 100, using N ′
token < 100 is still better than the

”no reasoning” baseline when N ′
token ≥ 70. We also observe that when N ′

token ≥ 80 tokens, the
accuracy recovers to 90% of the accuracy of Ntoken = 100. The results indicate that the model
deployer can control the number of N ′

token in a reasonable range during inference without retraining
the model with some accuracy trade-off.
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Figure 3: Figure 3a and 3b show the accuracy when varying N ′
token for STITCH-R and STITCH-S,

respectively, and the dots in the figure are the performance of the ”no reasoning” baseline (Section 6).
Figure 3c shows the performance when using a reasoning augmentation model to generate the text
reasoning for STITCH-R (Section 7); the accuracy is averaged over five math reasoning datasets.

7 USING REASONING FROM OTHER MODELS

Previously, we showed that STITCH-R and STITCH-S can generate reasoning before responding in
speech. Here, we discuss whether we can improve the quality of the speech response by using the
reasoning from other models. The motivation to do this is that sometimes the reasoning generated
by the SLM itself is not good enough or takes too long to generate, and we may use other stronger
or smaller models to generate the reasoning. We call the model used to generate the reasoning the

”reasoning augmentation model”.

We discuss how to improve STITCH-R by using a reasoning augmentation model. Given a user input
speech, we first use an ASR model to transcribe the audio and feed the transcription into the reasoning
augmentation model to generate a response, which will be used as the reasoning for STITCH-R.
Next, we crop the reasoning into chunks of N ′

token enclosed by [SOPR] and [EOPR], and then
feed the speech input and the first reasoning chunk to STITCH-R and generate the first text-speech
interleaved token span. After the first text-speech interleaved tokens are generated, we append the
second reasoning chunk to the input and generate the second text-speech interleaved token spans. We
continue the above process to generate the full response.

In the following experiment, we replace the text reasoning of STITCH-R using four reasoning
augmentation models: GLM-4-9B-Chat (GLM et al., 2024), Llama-3.1-8B, Llama-3.2-3B, and
Llama-3.2-1B (Grattafiori et al., 2024). We also vary N ′

token to see how the length of the reasoning
chunk affects the performance. The results are shown in Figure 3c. In general, stronger reasoning
augmentation models (GLM-4-9B-Chat and larger Llama models) can improve the accuracy of
the spoken response, while weaker reasoning augmentation model like Llama-3.2-1B worsens the
performance of STITCH-R. This shows that STITCH-R can incorporate the reasoning ability of
stronger models to improve the spoken answer. The experiment also shows that STITCH-R really
considers the contents in the reasoning to form the spoken response, instead of independently
generating the reasoning and not using that reasoning in the spoken responses.

8 QUALITATIVE RESULTS

In this section, we provide two outputs from our STITCH-R in Table 3, while the samples for STITCH-
S are similar and placed in Table 7 in the Appendix. The top sample in Table 3 shows a typical pattern
of the output from STITCH-R, where all the calculation results from the text token chunks are already
calculated in previous reasoning chunks. When generating the text tokens, the model simply needs to
rewrite the lengthy reasoning into more concise sentences that are easier for spoken communication.

The bottom sample in Table 3 shows a somewhat rare pattern, where the second text token chunk
includes a new calculation result (the number 120) that has not been explicitly calculated in previous
reasoning chunks. This shows that, besides thinking during the reasoning chunks, the model some-
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Question: Josh decides to try flipping a house. He buys a house for $80,000 and then puts in $50,000 in repairs. This increased the value
of the house by 150%. How much profit did he make?
Response:

[SOPR] ## Inner Monologue This is a math question. I need to think step by step. To solve this problem, we need to determine the
final value of the house after the repairs and then calculate the profit Josh made.
1. **Initial Purchase Cost**: Josh buys the house for $80,000.
2. **Cost of Repairs**: He spends $50,000 on repairs.
3. **Total Investment**: The total investment is the sum of the purchase cost and the repair cost [EOPR]

Josh spent $80,000 on the house and $50, <audio tokens> (...)

[SOPR] Total Investment = $80,000 + $50,000 = $130,000
4. **Increase in Value**: The value of the house increases by 150% after the repairs. To find the new value of the house, we calculate
150% of the initial purchase cost and add it to the initial purchase cost. Increase in Value = 1.5 × $80, [EOPR]

000 on repairs, totaling $130,000. After repairs, <audio tokens> (...)

[SOPR] 000 = $120,000. New Value of the House = $80,000 + $120,000 = $200,000
5. **Profit Calculation**: The profit is the difference between the new value of the house and the total investment. Profit = $200,000 -
$130,000 = $70,000
Thus, Josh made a profit of

the house’s value increased by 150%, making it $200 <audio tokens> (...)

[SOPR] $70,000. #### $70,000 [EOPR][EOR]

,000. So, his profit is $200,000 minus <audio tokens> (...) $130,000, which equals $70,000. The <audio tokens> (...)

answer is 70,000. <audio tokens> (...)

Question: Hannah’s city is having a big display of fireworks for the 4th of July. They’re going to set off 15 boxes of 20 fireworks each.
Hannah’s house is at the right angle to see 40% of the city’s fireworks. Hannah will also set off 3 boxes of 5 fireworks each in her backyard.
How many fireworks will Hannah see in total?
Response:

[SOPR] ## Inner Monologue This is a math question. I need to think step by step. To solve this problem, we need to calculate the total
number of fireworks Hannah will see from both the city’s display and her own backyard display.
**Step 1: Calculate the total number of fireworks from the city’s display.**
The city’s display consists of 15 boxes of 20 fireworks each. To find the total number of fireworks from the city’s display, we multiply the
number of [EOPR]

Hannah’s house will see 40% of the city’s <audio tokens> (...)

[SOPR] boxes by the number of fireworks in each box: 15 boxes × 20 fireworks per box = 300 fireworks
**Step 2: Calculate the total number of fireworks from Hannah’s backyard display.**
Hannah sets off 3 boxes of 5 fireworks each in her backyard. To find the total number of fireworks from her backyard display, we multiply
the number of boxes by the number of fireworks in each box: [EOPR]

fireworks, which is 120. Plus, she has 3 <audio tokens> (...)

[SOPR] 3 boxes × 5 fireworks per box = 15 fireworks
**Step 3: Calculate the total number of fireworks Hannah will see.**
Hannah will see 40% of the city’s fireworks. To find out how many fireworks this is, we calculate 40% of the total fireworks from the
city’s display: 40% of 300 fireworks = [EOPR]

boxes of her own fireworks, adding 15 more. So in <audio tokens> (...)

[SOPR] 0.40 × 300 = 120 fireworks
**Step 4: Add the fireworks from the city’s display and Hannah’s backyard display.** Finally, we add the fireworks from the city’s
display and Hannah’s backyard display to find the total number of fireworks Hannah will see: 120 fireworks from city display + 15
fireworks from backyard display = 135 fireworks #### 135 [EOPR] [EOR]

total, she’ll see 135 fireworks. <audio tokens> (...)

Table 3: Example outputs from STITCH-R. The text reasoning tokens are highlighted in green ;
the text tokens are highlighted in orange ; the audio tokens, which are omitted for simplicity, are

highlighted in red . We remove and insert some newlines for formatting.

times also incorporates the text tokens for thinking. However, this pattern is rare: We use GPT-4o to
parse the 1310 responses to GSM8K and find that only 5% of the samples illustrate this pattern. The
same pattern is also rare on STITCH-S.

Last, we find that the first text token chunk tends to rephrase the information of the question without
adding new calculation results, which can be seen in the two samples in Table 3. This shows that the
first text token chunk can be generated without relying on additional reasoning. This can explain why
STITCH-S can have a performance similar to TBS and STITCH-R: since the first text token chunk
can be generated without thinking, we can directly generate those texts without conditioning on any
reasoning.
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9 CONCLUSION

In this paper, we introduce STITCH, a generation framework for SLM that enables simultaneous
thinking and speaking. We achieve the simultaneous thinking and speaking by using the long duration
of an audio chunk to generate additional reasoning tokens before generating the speech tokens for
the next audio chunk. By design, STITCH-S induces no additional latency compared to the models
that cannot generate reasoning before they speak. On five math reasoning QA datasets, we show
that STITCH-R and STITCH-S significantly improve the accuracy over non-reasoning baselines by
over 15%. On non-reasoning datasets, STITCH-R and STITCH-S perform comparably well with
non-reasoning baselines. Moreover, we show that STITCH-R and STITCH-S allow flexible control of
the length of the partial reasoning span during inference time without retraining the model with an
acceptable accuracy trade-off. Last, we find that STITCH can use the reasoning from stronger LLMs
to improve the quality of the spoken response. Overall, the low latency and high performance of
STITCH show a promising future direction for spoken language models.
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A DATASET

A.1 TRAINING DATASET

We use three types of training data: dialogue datasets, math reasoning datasets, and knowledge-
intensive QA datasets. The sizes of the datasets are in Table 4. We explain how we construct our
training datasets from those existing datasets as follows.

Dialogue Datasets VoiceAssistant400K (Xiezhifei, 2024) is a spoken dialogue dataset built from a
text dialogue dataset, including OpenAssistant (Köpf et al., 2023) and HH-RLHF (Bai et al., 2022).
We subsample the dataset by filtering out (1) the instances whose ‘round‘ attribute is None or 0,
(2) the instances from the subset identity, and (3) the instances whose response audio is less
than 2 seconds. Given a user query and the response or answer from the dataset, we use GPT-4o to
generate a text reasoning given some in-context samples. GPT-4o is instructed to generate CoTs that
understand the user’s intention, recall relevant information, and provide the final answer. The prompt
we use is shown in Table 12.
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Math Reasoning Datasets We include three math reasoning datasets for fine-tuning: Tulu-3-
Persona Math, Tulu-3-Persona-Math-Grade, and Tulu-3-Persona-Algebra. The datasets include
the question and the CoT answer in text. We directly use the ground truth CoT answer as the text
reasoning. To obtain the spoken answer, we prompt GPT-4o to rewrite the answer such that the answer
is suitable for speech communication and then synthesize it with GPT-4o-mini-TTS. The voice is
sampled from the following list: alloy, ash, ballad, coral, echo. The prompt used to rewrite the
spoken answer is shown in Table 9. The question audio is also synthesized with GPT-4o-mini-TTS,
while the list of voices we sampled from is the same as the previous. The voice of the spoken question
and response is selected randomly and independently. The total size of the math reasoning datasets
used for fine-tuning is 220K.

Knowledge-Intensive Datasets We include two knowledge-intensive QA datasets, Natural Ques-
tion (NQ) (Kwiatkowski et al., 2019) and TriviaQA (TQA) (Joshi et al., 2017), to preserve the SLM’s
ability to respond to knowledge-seeking questions. These two datasets are text-based datasets. To
obtain the dataset for fine-tuning, we rewrite the ground truth answer from the dataset to make it
more suitable for spoken communication, and then synthesize the question and answer audio using
GPT-4o-mini-TTS. We sample from the same subset of voices randomly. The text reasoning is also
generated by GPT-4o by prompting it with the question and ground truth answer, and asking it to
generate an inner monologue that understands the user’s intention, recalls relevant information, and
provides the final answer. The prompts used for rewriting the answer and generating the reasoning
are shown in Table 11 and Table 10, respectively. When subsampling from NQ and TQA, we simply
take the first 50K instances from NQ and the first 20K instances from TQA without shuffling the
dataset before subsampling. The size of knowledge-intensive datasets is around 70K instances.

Dataset Size in Training Data Download Link

VoiceAssistant 177K gpt-omni/VoiceAssistant-400K
Tulu3 Math 150K allenai/tulu-3-sft-personas-math
Tulu3 Algebra 20K allenai/tulu-3-sft-personas-algebra
Tulu3 GSM 50K allenai/tulu-3-sft-personas-math-grade
Natural Question 50K google-research-datasets/natural questions
TriviaQA 20K mandarjoshi/trivia qa

Table 4: Training data sizes for each dataset. The download link in the above table is the link
where we download the original datasets and then apply our filtering and preprocessing. Directly
downloading from those links will not get the training dataset we use. Please follow the steps detailed
in Appendix A.1 to construct the training data.

A.2 TESTING DATASET

The testing dataset statistics are shown in Table 5. We use Kimi-Audio-Evalkit (Ding et al., 2025) to
download OpenAudioBench. All our evaluation is run using Kimi-Audio-Evalkit. When evaluating
the accuracy for math reasoning datasets and knowledge-intensive QA datasets, we use GPT-4o to
judge if the model prediction matches the ground truth; this is supported by Kimi-Audio-Evalkit.
The numbers of our result for GLM-4-Voice slightly differ from the numbers reported in Ding et al.
(2025) since we use GPT-4o as the judge, while Ding et al. (2025) use GPT-4o-mini as the judge. In
the original paper that proposes OpenAudioBench, Li et al. (2025b) also use GPT-4o as the judge,
and our numbers for GLM-4-Voice are very close to those reported in Li et al. (2025b).

B TRAINING DETAILS

We use LlamaFactory (Zheng et al., 2024) to fine-tune the model. To train with LlamaFactory, we
use the speech tokenizer to encode the audio of the question and answer into speech tokens. Since
LlamaFactory does not support fine-tuning GLM-4-Voice, the reader will need to slightly modify
some source code in LlamaFactory to allow it to support GLM-4-Voice. We provide the exact yaml
configuration file for fine-tuning below, including the detailed list of hyperparameters we use.

1 ### model
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Math Reasoning Datasets

AddSub MultiArith SinglEq SVAMP GSM8K
109 174 109 299 1310

(a)

OpenAudioBench

Llama Questions TriviaQA Web Questions AlpacaEval
300 1000 1000 199

(b)

Table 5: Counts for Math Reasoning benchmarks (top) and OpenAudioBench (bottom).

2 model_name_or_path: THUDM/glm-4-voice-9b
3 trust_remote_code: true
4

5 ### method
6 stage: sft
7 do_train: true
8 finetuning_type: full
9

10 ### dataset
11 template: glm4voice
12 cutoff_len: 8192
13 overwrite_cache: true
14 preprocessing_num_workers: 16
15 dataloader_num_workers: 4
16 cache_dir: ./
17

18 ### output
19 logging_steps: 10
20 save_steps: 500
21 plot_loss: true
22 overwrite_output_dir: true
23 save_only_model: false
24 report_to: none
25

26 ### train
27 per_device_train_batch_size: 2
28 gradient_accumulation_steps: 8
29 learning_rate: 1.0e-5
30 num_train_epochs: 2.0
31 lr_scheduler_type: cosine
32 warmup_ratio: 0.1
33 bf16: true
34 ddp_timeout: 180000000
35 enable_liger_kernel: true
36 deepspeed: examples/deepspeed/ds_z2_config.json

C DETAILED LATENCY CALCULATION

In the main content, we assume that the duration of each audio chunk tchunk synthesized from Nspeech
tokens is the same, and we use tchunk = 2 seconds in the paper. This is a simplification to make the
discussion easier. In fact, for the first chunk of 26 speech tokens, the corresponding audio is about 1.6
seconds, while the later audio chunks all have a duration of about 2 seconds. As a result, a safer Nreason
on an A100-80G GPU, with token per second around 86, should be 86× 1.6− (13 + 26) = 98.6,
which is still around 100, the number we use in our paper. It is also possible to make only the first
reasoning chunk shorter while all the later reasoning chunks have Nreason = 100. If the model is
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Id Config Use Reasoning Datasets Avg.Train Infer. AddSub MultiArith SinglEq SVAMP GSM8K

Baselines
1 GLM-4-Voice – ✘ 49.54 55.75 66.06 40.13 25.80 47.46
2 No reasoning ✘ ✘ 62.39 65.52 71.56 57.53 33.13 58.03
3 Mix reasoning ✔+✘ ✘ 62.39 77.59 85.32 60.87 36.49 64.53

Full Reasoning before Speaking
4 TBS ✔ ✔ 70.64 79.31 84.40 71.57 60.69 73.32
5 Mix reasoning ✔+✘ ✔ 67.89 86.21 83.49 69.57 59.92 73.42

Proposed Methods: Simultaneous Thinking and Speaking
6 STITCH-R ✔ ✔ 67.89 83.33 88.07 69.13 53.05 72.29
7 STITCH-S ✔ ✔ 73.39 84.48 81.65 66.78 52.18 71.70

Table 6: The performance on math reasoning datasets when evaluating the transcription of the speech
output. We use Whisper-large-v3 Radford et al. (2023) to transcribe the audio. The ”use reasoning”
columns denote whether text reasoning is in the training data or is generated during inference.

deployed on H100-80G GPU, the token per second can be as high as 123, the maximum number for
Ntoken can be 123× 1.6− (13 + 26) = 157.8. Using speculative decoding (Leviathan et al., 2023) to
speed up and increase the number of reasoning tokens for each chunk is also a valid option.

D UNSUCCESSFUL ATTEMPTS

We detail the unsuccessful attempts and negative findings observed in our experiments. Our aim is to
guide future research by highlighting these pitfalls so that others can avoid them.

LoRA Fine-tuning Initially, we tried to use LoRA (Hu et al., 2022) for fine-tuning. However, when
fine-tuning TBS using LoRA, we found that the resulting model cannot generate useful reasoning.
After fine-tuning, the performance on GSM8K is still around 35%, which is almost the same as the
accuracy of GLM-4-Voice. By observing the outputs from the fine-tuned model, we observed that the
model can generate outputs that satisfy the output format in the training data, i.e., reasoning and then
interleaved text-speech tokens. However, the reasoning is seldom correct and can make very trivial
mistakes. We suspect that this is because teaching GLM-4-Voice mathematical reasoning requires
significant model parameter updates, making LoRA fine-tuning a bad choice.

Fine-tuning only on Math Datasets We have tried to fine-tune only on the math datasets to teach
the model reasoning. However, we found that the resulting model will treat every input query as a
math question and list some equations to solve the question, even if the question simply asks ”Which
city is located at the intersection of the Tigris and Euphrates rivers?” This is possibly because the
model overfits to the pattern in the training data and forgets how to solve other non-math questions.
However, this can be easily solved by including diverse types of tasks in the training data, which is
what we do in the end.

Customized Attention Mask When training the STITCH-R model, we tried with a variant with
customized attention masks. Precisely, we make the reasoning tokens unable to attend to the text
tokens and speech tokens, while the text and speech tokens can attend to all types of tokens. The
attention mask still remains causal. The rationale for this customized attention mask is to make the
reasoning tokens feel like there is no gap between two chunks of reasoning tokens, since they cannot
see the text and speech tokens that separate two chunks of reasoning tokens. We use the customized
attention mask during training and inference. However, we found that the results on the math
reasoning datasets are similar to the results of not using a customized attention mask. Considering
that the customized attention mask requires some customization during training, complicates the
inference procedure, and does not improve the performance, we do not recommend this configuration.
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Question: Claire makes a 3 egg omelet every morning for breakfast. How many dozens of eggs will she eat in 4 weeks?

Response:

Claire makes a 3-egg omelette every morning <audio tokens> (...)

[SOPR] ## Inner Monologue This is a math question. I need to think step by step. To solve this problem, we need to determine how
many dozens of eggs Claire will eat in 4 weeks if she makes a 3-egg omelette every morning.
1. **Calculate the number of days in 4 weeks:**
- There are 7 days in a week.
- Therefore, in 4 weeks, there are (4 × 7 = 28 [EOPR]

, and there are 28 days in 4 weeks. That <audio tokens> (...)

[SOPR]
) days.
2. **Determine the number of eggs Claire eats per day:**
- Claire makes a 3-egg omelette every morning.
- Therefore, she eats 3 eggs per day.
3. **Calculate the total number of eggs Claire eats in 28 days:**
- Since she eats 3 eggs per day, in 28 days, she will eat (3 × 28 = 84) eggs.
4. **Convert the total number[EOPR]

’s 84 eggs in total. Since there are 12 eggs <audio tokens> (...)

[SOPR] of eggs from whole eggs to dozens:**
- There are 12 eggs in a dozen.
- To find out how many dozens of eggs she eats, divide the total number of eggs by 12.
- (
frac{84}{12} = 7 ) dozens.
Thus, Claire will eat 7 dozens of eggs in 4 weeks. #### 7 [EOPR][EOR]

in a dozen, she’ll eat 7 dozens of eggs in <audio tokens> (...)

4 weeks. The answer is 7 dozens. <audio tokens> (...)

Table 7: An Example output from STITCH-S. The text reasoning tokens are highlighted in green ;
the text tokens are highlighted in orange ; the audio tokens, which are omitted for simplicity, are

highlighted in red . We remove and insert some newlines for formatting.

You are a helpful evaluation assistant. You will be given a question, its ground
truth answer, and a prediction by an AI assistant. Your job is to evaluate the
fluency of the answer into a single score. The score you can choose from is 1, 2,
3, 4, 5. Note that you **do not** need to judge the accuracy of the AI assistant’s
prediction; you only need to consider how fluent the sentences are.

## Evaluation Criteria:
Fluency and Coherence (1{5): This rating measures the quality of individual
sentences|are they well-written and grammatically correct? It also covers the
overall organization and structure of the prediction.

## Output Format:
Please provide some reasoning about how you evaluate the prediction and explain what
factors affect your judgment. Conclude your answer with ‘Final verdict: score‘,
where ‘score‘ is an integer from [1,2,3,4,5].

## Question
{question}

## Ground Truth answer
{answer}

## Prediction by AI assistant
{prediction}

## Evaluation Task
How fluent and coherent is the prediction? (On a scale of 1{5, with 1 being the
lowest)

Table 8: The prompt used to evaluate the fluency of the text tokens from the model with LLM-as-a-
judge.
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You will be given a math question and its inner reasoning about the math question
that is used to derive the final answer. Your job is to summarize the reasoning
into a short and concise answer that is suitable to be spoken in dialogue. You
should avoid using excessive equations and math notations but only briefly mention
how the result is calculated. You don’t need to restate each step and intermediate
results in the inner reasoning; just provide a brief overall summary.

## Example 1:
### Question ###
Natalia sold clips to 48 of her friends in April, and then she sold half as many
clips in May. How many clips did Natalia sell altogether in April and May?
### Inner reasoning ###
I need to calculate the number of clips Natalia sold in April and May. I am
given that she sold 48 in April, and I need to calculate how many she sold in May.
We know that she sold half as many in May, so 48 / 2 = 24. She sold 24 in May.
Combining the answer, she sold 48 + 24 = 72 in April and May.
### Summarized spoken answer ###
In April she sold 48 clips and in May she sold half that amount, which is 24, so
altogether she sold 72 clips.

## Example 2:
### Question ###
Weng earns $12 an hour for babysitting. Yesterday, she just did 50 minutes of
babysitting. How much did she earn?
### Inner reasoning ###
We need to calculate how much she earned in 50 minutes. We are given that she earns
12 per hour. 50 minutes corresponds to 50 / 60 = 5 / 6 hours. As a result, she can
earn 12 * (5 / 6) = 10. The answer is 10.
### Summarized spoken answer ###
She worked 50 minutes, which is five-sixths of an hour at $12 per hour, so she
earned $10.

## Example 3:
### Question ###
Betty is saving money for a new wallet which costs $100. Betty has only half of
the money she needs. Her parents decided to give her $15 for that purpose, and her
grandparents twice as much as her parents. How much more money does Betty need to
buy the wallet?
### Inner reasoning ###
We need to calculate how much more money Betty needs. She has saved $50, her
parents gave $15, and grandparents gave $30, so she has $95 in total and needs $5
more. The answer is 5.
### Summarized spoken answer ###
She has $95 so far from her own savings and gifts, and since the wallet costs $100,
she still needs $5.

# Now it is your turn
### Question ###
{question}
### Inner reasoning ###
{reasoning}
### Summarized spoken answer ###

Table 9: The prompts used to rewrite the answers in the dataset into the spoken answer for the math
reasoning dataset in the training data. The {question} is the placeholder of the question; the
{reasoning} will be replaced by the reasoning, which is the original answer in the training data.
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You will be given a factual question and its answer. It is possible that there are
multiple answers to the question, and we are only providing one for simplicity.
Your job is to generate some inner thinking to derive the answer. Imagine that
you are a human and you heard somebody ask you that question, and you should think
before responding to the question in speech. Your inner thinking can include
rephrasing the question into a better way for understanding, and clarifying any
possible ambiguity, retrieving the correct answer and some relevant information.
Your inner reasoning should include the short answer. You should not say "I know
the answer" without explicitly saying the answer. You should not say "I need more
information" and end your reasoning since this is not helpful at all.

## Example 1
## Question:
What color was John Wilkes Booth’s hair?
## Answer
jet-black
## Inner thinking
I think the user is asking about John Wilkes Booth who assassinated United States
President Lincoln on April 14, 1865. His hair color is jet-black. Got the answer
and ready to provide it to the user.

## Example 2
## Question:
Can you make and receive calls in airplane mode?
## Answer
No
## Inner thinking
Airplane mode is a setting on smartphones and other portable devices that suspends
all radio-frequency transmissions. So you can’t make or receive calls while it’s on.
The answer is no.

## Example 3
## Question:
Who played "Will Munson" on "As the World Turns"?
## Answer
Jesse Lee Soffer
## Inner thinking
The user likely means the CBS soap "As the World Turns." The character Will Munson
was most recently portrayed by Jesse Lee Soffer. Ready to speak the answer.

# Now it is your turn
## Question:
{question}
## Answer
{answer}
## Inner thinking

Table 10: Prompts used to generate reasoning for NQ and TriviaQA in the training data.
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You will be given a factual question and its short answer. We will also provide you
some inner reasoning that leads to the answer.
It is possible that there are multiple answers to the question, and we are only
providing one for simplicity.
Your job is to rewrite the short answer such that it is appropriate for spoken form.
When asked a factual question, humans will think about the question in their mind
and come up with an answer that summarizes their inner reasoning in a concise and
clear response that answers that question and keeps only the relevant information.
Your job is to form this spoken answer based on the question, the inner reasoning,
and the short answer.

## Example 1
## Question:
What color was John Wiles Booth’s hair?
## Inner thinking
I think the user is asking about John Wilkes Booth who assassinated United States
president Lincoln on April 14, 1865. His hair color is jet-black. Got the answer
and ready to provide it to the user.
## Short answer
jet-black
## Spoken answer
You mean the one who killed Lincoln? His hair color was jet-black.

## Example 2
## Question:
Can you make and receive calls in airplane mode?
## Inner thinking
Airplane mode is a setting available on smartphones and other portable devices.
When activated, it suspends all radio-frequency transmissions, disabling voice and
data services. So you can’t make or receive calls while it’s on.
## Short answer
no
## Spoken answer
Since airplane mode disables all signal transmissions, you cannot make or receive
calls in airplane mode.

## Example 3
## Question:
Who played "Will Munson" on "As the World Turns"?
## Inner thinking
The user likely means the CBS soap opera "As the World Turns." The character Will
Munson was most recently portrayed by Jesse Lee Soffer.
## Short answer
Jesse Lee Soffer
## Spoken answer
It’s Jesse Lee Soffer|he played Will Munson on that soap opera.

# Now it is your turn
## Question:
{question}
## Inner thinking
{reasoning}
## Short answer
{answer}
## Spoken answer

Table 11: Prompts used to rewrite the original answer into spoken forms for NQ and TriviaQA.
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# Task Overview: Inner Monologue Creation
A voice assistant receives a user query or instruction and produces an answer. We
now want to come up with a brief \inner monologue" that the assistant might have
before speaking.
User Question/Instruction: {question}
Assistant Answer: {answer}

# Task Introduction
Generate a concise inner thinking that the assistant could have had before speaking.
Your inner monologue should include understanding of the user’s question or
instruction and then a draft answer.
Make sure the inner monologue will lead to the assistant’s provided answer.

# Examples

## Example 1
User Question/Instruction: How can I stop being afraid of the dark?
Assistant Answer: It’s completely normal to feel afraid of the dark, and there are
steps you can take to feel more comfortable. Start by gradually exposing yourself
to the dark in small, manageable steps. You can use a nightlight as a transitional
tool. Establish a bedtime routine that makes you feel relaxed, like reading a book
or listening to calming music. Breathing exercises or meditation can help reduce
anxiety. Rearrange your bedroom to make it feel safer and more inviting. Remind
yourself that the fear is often about not knowing what’s there, rather than actual
dangers. Talking to someone about your fears can also be really helpful.
Inner Monologue: The user wants to stop being afraid of the dark. I will first
acknowledge that it’s normal to feel fear, then suggest gradual exposure, a
comforting bedtime routine, anxiety-reducing exercises, and talking to someone.

## Example 2
User Question/Instruction: Can you count down from 100 by subtracting 7 each time?
Assistant Answer: Yes, I can. Help you with counting down from 100 and minus 7
each time. Here we go: 100, 93, 86, 79, 72, 65, 58. Do you need more?
Inner Monologue: The user wants a countdown by sevens from 100. I’ll compute
100-7=93, then subtract 7 each step until I have a sequence. I’m ready to present
the numbers.

## Example 3
User Question/Instruction: What are some interesting things I can mix into my
scrambled eggs?
Assistant Answer: Scrambled eggs can be a delightful canvas for a variety of
ingredients! You can try adding cheese like cheddar, feta, or Swiss for extra
creaminess. Fresh herbs such as chives, parsley, or dill can bring a burst of
flavor. Diced vegetables like bell peppers, tomatoes, spinach, or mushrooms can
add texture and nutrition. For protein, consider mixing in smoked salmon, ham,
or crumbled bacon. If you enjoy a bit of heat, a dash of hot sauce or chopped
jalapeños can be great. Even a bit of sour cream or cream cheese can make the eggs
extra creamy. Enjoy experimenting to find your perfect blend!
Inner Monologue: The user is asking for mix-ins for scrambled eggs. I’ll recall
common add-ins like cheeses, herbs, vegetables, proteins, and creams, then frame
them as suggestions.

# Your Task
Generate the inner monologue for this instruction/answer pair.
User Question/Instruction: {question}
Assistant Answer: {answer}
Inner Monologue: (provide the concise inner monologue only)

Table 12: The prompt used to generate the reasoning for VoiceAssistant400K.
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