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ABSTRACT

Current large language models (LLMs) and spoken language models (SLMs) begin
thinking and taking actions only after the user has finished their turn. This disables
the model from interacting with the user during the user’s turn and can lead to a
high response latency for waiting for the model to think. Consequently, thinking
after receiving the full input is not suitable for speech-to-speech interaction, where
real-time and low-latency interaction is important. We address the above issue by
drawing inspiration from the fact that humans can naturally “think while listening”.
In this paper, we propose SHANKS, a general inference framework that enables
SLMs to generate unspoken chain-of-thought reasoning when listening to the user
input. SHANKS streams the input speech in fixed-duration chunks and, as soon as a
chunk is received, generates unspoken reasoning based on all previous speech and
reasoning, while the user continues speaking. SHANKS uses unspoken reasoning
to determine whether to interrupt the user and make tool calls to complete the
task. We demonstrate that SHANKS enhances the real-time user-SLM interaction
in two scenarios: (1) When the user is presenting their step-by-step solution to
a math problem, SHANKS can listen to and reason over the user’s speech and
make an interruption when the user makes a mistake. SHANKS interrupts the
user 37.1% more accurately compared with a baseline that interrupts the user
without thinking. (2) In a tool-augmented dialogue scenario, where the model
needs to make tool calls to achieve the user’s request, SHANKS can complete
56.9% of the tool calls before the user even ends their turn. Overall, SHANKS
is a step toward models that keep thinking throughout the conversation, not only
after a turn ends. Animated illustrations of SHANKS can be found at https:
//d223302.github.io/SHANKS/.

1 INTRODUCTION

In recent years, the thinking process has been used to improve Large Language Models (LLMs),
where the LLM first generates a hidden chain-of-thought (CoT) reasoning (Wei et al., 2022; Kojima
et al., 2022) invisible to the users, and then generates the final output response (OpenAI, 2024c;
Guo et al., 2025). This thinking process improves LLMs on reasoning-intensive tasks, including
mathematics (Lightman et al., 2024), coding (Chen et al., 2021), and questions that involve significant
domain knowledge (Rein et al., 2024). However, current reasoning LLMs only start to think after
receiving the complete user input, which is reasonable for turn-based interactions, i.e., the model
processes the user’s message after it is fully composed and sent.

In contrast, human behavior in spoken communication is different. Humans naturally think while
listening, far before the speaker finishes their turn (Bögels et al., 2015; Corps et al., 2018; Bögels et al.,
2018). Thinking during listening offers two key advantages: (1) It enables timely and well-founded
reactions, including interruption, even before the speaker’s turn ends. (2) It reduces response latency
by allowing answer preparation to begin before the speaker finishes speaking. Motivated by these
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Figure 1: The timing diagram of SHANKS. As the user speaks, their speech is segmented into
chunks for every tchunk seconds and streamed to the SLM. After receiving an input chunk, SHANKS
generates the thinking tokens, which might include calling external tools or determining to interrupt
the user. When the user is speaking the i-th speech chunk Si, SHANKS generates the (i − 1)-th
thinking chunk Ri−1, achieving thinking while listening. When the current speech chunk Si is fully
spoken by the user, SHANKS stops the thinking for Ri−1, adds the latest speech Si and the previous
reasoning Ri−1 to its context, and begins the i-th thinking chunk Ri.

observations, we propose a method to enable spoken language models (SLMs) to think while listening
to input speech.

In this paper, we introduce SHANKS: Simultaneous Hearing and Thinking with Chunked Input
Speech. SHANKS is a general inference framework for both end-to-end (E2E) and cascade SLMs to
achieve thinking while listening. At inference time, SHANKS processes the user input in a fixed-size
chunk. Once a chunk of speech input is received, SHANKS generates a chunk of unspoken thinking
tokens based on all previous input speech chunks and previous thinking chunks. SHANKS alternates
between receiving the input speech chunk and generating an unspoken CoT reasoning when the user
is still emitting the next speech chunk, achieving the thinking while listening. During the thinking
process, SHANKS can decide to interrupt the user or make tool calls to prepare for the final spoken
response. The inference workflow of SHANKS is depicted in Figure 1.

We use two scenarios to show how SHANKS can improve real-time user-SLM interaction. First, we
study a scenario where the user first describes a math question and then describes their step-by-step
solution. SHANKS can listen to the user’s problem-solving process and perform internal thinking in
the meantime to interrupt the user when the user makes a mistake in their solution. This scenario
has great potential in educational use cases, where the SLM serves as a tutor to guide the student.
Compared to a baseline that makes an interruption without thinking, SHANKS interrupts 71% more
when the user makes a mistake, while the interruption made by SHANKS is 37.1% more valid.

Next, we focus on a task-oriented dialogue setting, where the user requests the SLMs to assist with
a travel plan, and the model needs to call Booking.com APIs to complete the user’s request and
respond to the user. Without SHANKS, all the tool calls can only be made after the user’s speech
ends, resulting in a higher response latency. We use SHANKS to make tool calls when the user is still
speaking. SHANKS enables the model to successfully complete 56.9% of API calls while the user is
still speaking, reducing the latency of the final response.

We summarize our contribution as follows:

1. We propose SHANKS, a general framework for SLMs that enables thinking while listening.
To the best of our knowledge, we are the first to explore generating unspoken CoT reasoning
when the user is still speaking.
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2. We show that SHANKS can interrupt the user more accurately compared to a baseline that
interrupts without thinking.

3. Using SHANKS, the SLM can successfully make tool calls before the user even finishes
talking.

2 METHOD: SIMULTANEOUS HEARING AND THINKING WITH CHUNKED
INPUT SPEECH

Current LLMs and SLMs only start to think after the user’s input is completed. In contrast, humans
can think while listening (Bögels et al., 2015; Corps et al., 2018; Bögels et al., 2018), where we reason
over what we just heard, guess what the speaker might be up to, and prepare the necessary ingredients
to cook up a good response. Thinking while listening allows us to interact with the speaker better
when the speaker is still speaking. In this section, we introduce SHANKS, a general framework to
make SLMs capable of thinking while listening. Here, we only discuss the basic form of SHANKS,
and we defer the more advanced usages, including interruption or tool call, to later sections.

2.1 INFERENCE

During inference, SHANKS requires that the user’s input speech comes in a streaming manner.
SHANKS processes the streaming user input speech by a fixed chunk size of tchunk seconds. We use
Si to denote the i-th user input speech chunk, where Si is an audio chunk of tchunk seconds, except
for the last chunk SN , which may be shorter. When the user is still speaking, SHANKS alternately
takes the user speech Si and generates the thinking chunks Ri conditioning on all previous user
speech and all previous thinking chunks. The thinking chunks Ri are not spoken by the SLM; they
only serve as the internal reasoning process of the SLM.

Here, we walk through what happens for SHANKS during inference. The following contents are best
read with Figure 1. At t = 0, the user begins to talk. When t = tchunk, the user speech from 0 to
tchunk, i.e., S1, is sent to the SLM. Here, we append a special token [EOPA] (end of partial audio)
after S1 to let the SLM know that this is the end of a chunk of partial user speech. Based on S1,
the SLM generates the first thinking chunk R1. A thinking chunk is enclosed in two special tokens
<think> and </think>. The SLM generates R1 during the interval t = tchunk to t = 2tchunk,
and the user is still speaking the second chunk S2 at the same time.

Since tchunk is the time for the SLM to generate its thinking, the duration of tchunk cannot be selected
too small; otherwise, the SLM may not be able to produce meaningful thinking chunks. The number
of thinking tokens in Ri is restricted to no more than tchunk × ntps, where ntps is the number of
tokens the model can generate per second. Unless specified, we select tchunk = 4.0s in our paper;
a 7B model can generate around 320 tokens on a single A100 GPU in this duration. At the end of
tchunk, if the thinking chunk has not finished generating, i.e., the </think> token has not been
emitted, we directly stop generating and append the </think> token at the end of the thinking
chunk.

At t = 2tchunk, we take the freshly obtained user speech chunk S2 (from t = tchunk to t = 2tchunk)
and pass this chunk to the SLM, and again appending the [EOPA] after this chunk to generate the
next thinking chunk. (Assume that the user still has not ended their turn at t = 2tchunk.) When
generating the next thinking chunk R2, the SLM conditions on S1, R1, and S2. The SLM will
continue the process of taking user input speech chunks and generating the thinking chunks until the
user ends their speech in the N -th chunk of speech, SN . After the user ends their speech, we feed the
last speech chunk SN into the SLM, while this time we append a different special token [EOA] (end
of audio), indicating that the user’s speech has ended. Based on SN and all the previous interleaved
speech/thinking chunks {S1, R1, · · · , SN−1, RN−1}, the SLM generates the thinking chunk RN and
then generates a final response chunk O. Only the final response O will be spoken by the SLM.

Since SHANKS chunks the user input using a fixed-duration chunk tchunk, the model’s thinking
will lag behind the user’s speech by at least tchunk seconds. If the user’s speech is less than tchunk,
SHANKS cannot think while listening. However, since long speech can easily happen in real-world
interaction, this limitation might not be a significant weakness of SHANKS.
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(a) Basic Training seqience

                          [INTERRUPT]

 

(b) Training seq. with interrupt

(c) Training seq. with API call

Figure 2: Illustration of the training data. Si: the speech for the i-th user speech chunk; Ri: the
i-th thinking block after Si; O: the final response block; Ai: the API call responses after the speech
chunk Si. Blocks in dashed lines do not contribute to the training loss, while blocks in solid lines are
included for loss calculation. (a) The general training sequence: Alternating between user speech
block and SLM thinking token chunks (Section 2.2), followed by a final response chunk. (b) Training
data with interruption: Alternating between user speech blocks and the thinking token chunks, while
the last thinking chunk includes a special token [INTERRUPT]. (c) Training data with API calls:
Similar to (a), while each thinking chunk may be separated into two blocks Ri−1 and Ri−2 by the
API call response Ai.

2.2 TRAINING

During inference, SHANKS requires the SLM to generate thinking chunks based on all previous user
input speech chunks and the model’s own thinking chunks. During training, we prepare datasets to
make the SLM learn this behavior. Assume that we have a complete user speech S, we can segment it
into N chunks {S1, · · · , SN} with a fixed duration tchunk. Next, assume that we use some method to
obtain the thinking chunks {R1, · · · , RN} and the output response O; we will explain how to obtain
them in later sections. After preparing the training data, we use the standard language modeling
cross-entropy loss to train the SLM to predict R1 given {S1}, predict R2 given {S1, R1, S2}, etc., and
predict RN and O given {S1, R1, · · · , SN−1}. A full training sequence is depicted in Figure 2(a).

3 TASK INTRODUCTION

After introducing the basics of SHANKS, we use two tasks to demonstrate how SHANKS can be
applied. In this section, we explain the setup of the two scenarios and how SHANKS works at
inference time.

3.1 SCENARIO 1: INTERRUPTING USER TURN

In the first scenario, we aim to use SHANKS to make SLMs able to interrupt the user when the user
is saying something wrong. The significance of this application lies in its potential in educational
use cases, where the SLMs can serve as a tutor and listen to the speaker, a student, describing how
they solve a problem. The SLM can make a timely interruption to let the student know that they are
making a mistake, allowing them to correct it as early as possible.

Interruption is related to the full-duplex ability of spoken language models (Lin et al., 2025). While
most prior works on full-duplex SLMs focus on user interrupting SLMs, we focus on the reverse
scenario: SLM interrupting users. As an important note, we do not advocate that it is good to have a
model that interrupts the user. Some users might find it annoying and unpleasant when interrupted
by an SLM. Our goal is a modeling mechanism that enables interruption, leaving model deployer
policies and users to decide when (or whether) to turn it on.

3.1.1 TASK DESCRIPTION

We explain the precise task we are studying. In this task, the user describes a math problem and
then solves the problem. The user’s solution does not simply state the answer; the user describes a
step-by-step problem-solving process, which might be correct or wrong. The SLM needs to interrupt
the user when the user is making a mistake, and not to interrupt the user when the solution is correct.

As this is a novel task and there is no available data, we built the evaluation data ourselves. First, we
construct the user speech. A single user speech includes (1) a math question and (2) a step-by-step
solution. We source the math questions from the testing data of GSM8K (Cobbe et al., 2021), a
grade-school math word problem dataset commonly used for evaluating mathematical reasoning
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ability (Wei et al., 2022; Kojima et al., 2022; Wang et al., 2023). Next, we use two LLMs, Llama-
2-7B (Touvron et al., 2023) and Llama3.1-8B (Grattafiori et al., 2024), to generate step-by-step
answers for those questions, and use GPT-4o (OpenAI, 2024b) to determine if the answer generated
by the two models matches the ground truth answer in the dataset. We select these two models
since they can generate CoT reasoning to solve the math problem, and their performance on GSM8K
is very different: Llama-2-7B is a weaker model and prone to generating wrong solutions, while
Llama-3.1-8B is a stronger model, which can generate more accurate solutions.

After we have the texts for the step-by-step solution, we convert them into speech. We use GPT-4o
to rewrite the answers generated by the two Llama models to make the solution more colloquial.
Next, we concatenate the original question, the colloquial step-by-step answer, and prepend a prefix

”I want to solve the following question.” to form the transcription of a testing instance. We use
GPT-4o-mini-TTS (OpenAI, 2024a) to synthesize the speech.

The final testing dataset includes 1280 instances with correct solutions and 1140 with incorrect
solutions. We call the former the ”correct subset” and the latter the ”incorrect subset. The average
duration of the user’s speech is around 49.25 seconds.

3.1.2 TRAINING DATA FOR INTERRUPTION

To teach the model to think while listening and determine whether to interrupt, the training data in
this task include two types of instances: (1) The user provides a correct step-by-step solution to the
question, and the model does not interrupt the user during the user’s speech. After the user finishes
the speech, the output response acknowledges the correctness of the answer. (2) The user’s turn
unfolds an erroneous problem-solving process, and the model interrupts the user when the user makes
the first mistake and clearly explains what is wrong.

To construct such a training dataset, we use the math questions in Tulu3-Persona-Math-Grade (Lam-
bert et al., 2024) to construct the user speech S (including the question and the step-by-step solution)
following the previously described procedure, and then segment the speech by a fixed duration
tchunk = 4 seconds to obtain {S1, · · · , SN}.

Next, we use GPT-4o to generate the thinking chunk Ri. When generating the i-th thinking chunk Ri,
the input to GPT-4o includes the transcriptions of all previous user speech chunks {S1, · · · , Si} and
all previous thinking chunks {R1, · · · , Ri−1}. GPT-4o is required to do the following in the thinking
chunk: (1) Track the information already known and calculate intermediate variables when they are
available. (2) Identify if any errors are in the current user’s transcription. If there is an error, GPT-4o
should generate a [INTERRUPT] token at the end of the thinking chunk, indicating that the user
should be interrupted. We give GPT-4o four in-context examples to allow GPT-4o to understand the
task. The prompt to GPT-4o is given in Table 3 and 4 in the Appendix.

After generating the thinking chunks, we generate the final output response O. For the user speeches
with an error-free solution, the output response simply needs to let the user know that their solution is
correct. We prompt GPT-4o to generate the final response based on the transcription of the full user
speech and all previous thinking chunks. Now, we can form a training data sequence by interleaving
Si and Ri and then appending O in the end.

For those user speeches with a wrong solution, the output response will be an interruption to the
user’s speech. Assume that based on our previous process for generating the Ri’s, GPT-4o decides to
interrupt the user after the user speech chunk Sk, i.e., the thinking chunk Rk includes the interruption
token [INTERRUPT]. To generate a response for interruption, we give GPT-4o the user’s speech up
to the k-th user speech chunk and all the previous thinking, and ask GPT-4o to generate a response O
to interrupt the user. The interruption should be precise on what error is made by the user and how to
correct it. After this process, we can interleave S1 to Sk with R1 to Rk and append O in the end to
form a training sequence. A figurative illustration of this training instance is shown in Figure 2(b).
Note that in the last thinking chunk Rk, there will be a special token [INTERRUPT], indicating that
the model is going to interrupt the user.

3.1.3 INFERENCE AND EVALUATION

During inference, we stream the user speech to the SLM by a fixed chunk size tchunk, and follow the
inference procedure elaborated in Section 2.1. If the SLM generates the special token [INTERRUPT]
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in a thinking chunk Rk and outputs a response chunk O (when the user is emitting speech chunk
Sk+1), we convert the response token into speech to interrupt the user. Once an interruption happens,
the future user speech chunks will not be streamed to the SLM.

We evaluate a model on the testing dataset constructed in Section 3.1.1. We use the following metrics:

1. Interrupt ratio: The ratio of total interrupted instances among the total instances. A good
model should have a low interrupt ratio on the correct subset and a high interrupt ratio on
the wrong subset.

2. Valid interrupt ratio: This is used to evaluate whether an interruption made by the model
is valid, and the valid interrupt ratio is defined as the ratio of valid interruptions among
the total interruptions. To judge whether an interruption response O is valid or not, we use
LLM-as-a-judge (Chiang & Lee, 2023; Zheng et al., 2023). We give the judge LLM (GPT-
4o) the transcription of the user input until the time of interruption1 and output response O
from the model, and ask the LLM judge to determine if the model’s interruption response O
correctly interrupts the user when there are unclear or mistakes in the user’s speech. The
prompt given to the judge model is shown in Table 10 in the Appendix.

3. Interruption latency: The time of the model interruption compared to the time when
the first error happens in the user’s speech, denoted as terror. This metric is only used
to evaluate the incorrect subset. For samples in the incorrect subset, we use GPT-4o to
determine terror. The details on determining terror are included in Appendix C.1. Assume
that the model interrupts the user at tinterrupt, then the interruption latency is calculated as
tinterrupt − terror, where tinterrupt is the time when the model starts to emit the first package
of the speech for the interruption output O.

3.2 SCENARIO 2: MAKING TOOL CALLS WHEN LISTENING

In the previous scenario, we have introduced SHANKS can be used to think when listening to interrupt
the user when necessary. However, the ”thinking” of a model can not only include the CoT reasoning
generated by the model itself; the model can use external tools in their thinking process to complete
the user’s request and improve the answer quality (Schick et al., 2023; Qin et al., 2024b;a; Gao et al.,
2024; Wang et al., 2024). In the second scenario, the SLMs will use external tools in their thinking
process to achieve the user’s request.

This kind of tool-augmented generation has been widely explored in text-in-text-out LLMs (Qin et al.,
2024a). Given a user request, a tool-augmented LLM selects relevant tools such as calculators (Schick
et al., 2023), search engines (Luo et al., 2023), and other APIs (Qin et al., 2024b), and integrates
the tool execution results into its reasoning process. However, current tool-augmented LLMs begin
calling the tools after the full user input is received, which adds delay while the model invokes tools,
waits for results, parses them, and composes a response. This delay may be acceptable in text-only
settings, but in spoken dialogue, this latency breaks conversational flow.

In the second task, we will use SHANKS to make tool calls when the user is still speaking, thus
reducing the response latency due to making tool calls. As a proof of concept, we consider a task-
oriented dialogue where the SLM serves as a travel-agency agent and is given a set of APIs it may
call to complete the task. For example, the user might say, ”Help me check the details of the cheapest
flight from Hangzhou to Seoul on December 10, 2024, and the car rental information near Seoul
airport.” The SLM makes API calls to resolve airport names or codes, search for flights, and then
query car-rental options, and finally composes the results into a single reply.

Given a user query like the example above, once the destination and date are clear, the flight search
API can be called even when the user is only halfway through speaking. This is where SHANKS can
be useful: processing partial user input and performing early actions. Next, we formally introduce
the task we study and how we evaluate it.

1If the interruption happens in Ri, the user is currently speaking the (i+ 1)-th speech chunk Si+1, as the
thinking Ri happens simultaneously when the user says Si+1. Consequently, we also feed the transcription of
Si+1 into the judge model when determining whether the interruption is valid. Nevertheless, we do not find the
results to differ significantly if we only give the judge model up to the speech chunk Si.
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3.2.1 TASK DESCRIPTION

To show that SLMs can make tool calls when listening to the user request, we adopt Complex-
FuncBench (Zhong et al., 2025), an evaluation dataset that assesses LLMs’ ability to make multi-step
API calls. An instance in ComplexFuncBench includes a user query in text specifying some require-
ments for a travel plan and a list of tool descriptions that are required to complete the task. Some
example tools include APIs for searching hotels or flights.

An evaluated model needs to make relevant API calls and provide the resulting information to the user.
A single user query typically requires multiple API calls, and these calls may have dependencies in
which the output of one call becomes an argument to a subsequent call, so the call order matters and
some calls may not be run in parallel. For each instance, the dataset provides the ground truth API calls
and their corresponding API responses, which can be used to evaluate whether the model’s API call
is correct. To adapt ComplexFuncBench to our spoken-dialogue setting, we use GPT-4o-mini-TTS to
synthesize the user’s spoken query from the text instructions from ComplexFuncBench.

3.2.2 TRAINING DATA FOR TOOL CALL

To train SHANKS to perform Tool calls when listening, we need to teach the model to make API calls
in their thinking process Ri based on user input speech chunk Si. We split half of the instances in
ComplexFuncBench to construct the training data and the other half as the testing data.2 The speech
chunks Si in the training data can simply be obtained from segmenting the audio of the user query
speech.

The next step is to construct the thinking chunks Ri. In this task, the thinking chunk Ri is the API
calls and call responses. For each user query, ComplexFuncBench already provides the ground truth
API calls to complete the task, and we only need to determine which API calls, among the ground
truth API calls, can be made after a speech chunk Si. To determine which API calls can be made in
Ri, recall that a thinking chunk Ri is based on the user speech up to i× tchunk seconds, so as long
as the speech up to i× tchunk provides the information to make an ground truth API call, that API
call can be included in Ri. We follow the above idea and prompt GPT-o1 (OpenAI, 2024c) with the
transcription of the user speech, the time alignment of each word in the user’s speech, and the ground
truth APIs, and ask GPT-o1 to determine the earliest time an API call can be made. The prompt is
shown in Table 8 in the Appendix. Based on the above process, we can determine which ground truth
APIs should be included in which thinking chunk Ri. A thinking chunk Ri can have more than one
API call and response. If no API calls can be made in Ri, we put a template message that says there
are no additional tool calls that can be made currently.

The final response O is also generated with GPT-4o by prompting it to generate a final response
based on the user query, all the ground truth API calls, and the corresponding responses. During
training, the descriptions of the API calls necessary to complete the user’s request will be included in
the system prompt to let the model know what APIs can be used.

An illustration of a training instance is shown in Figure 2(c). During training, the loss for the API
call response in Ri is masked. Training on this dataset will teach the model to make API calls based
on incomplete user queries as long as the information for an API call is sufficient.

3.2.3 INFERENCE AND EVALUATION

During inference, for a testing instance, the model is given the user’s speech in a streaming manner;
the descriptions of the APIs that can be used in this testing instance. When the model makes an API
call, we use GPT-4o as a judge to determine if the API call matches one of the ground truth API calls,
and return the response of the ground truth API call if a match is found. If the API call does not
match the API call in the ground truth, we return a generic error message. Using GPT-4o to match
the API call made by the model against the ground truth follows one of the evaluation protocols in
the original ComplexFuncBench (Zhong et al., 2025).

2ComplexFuncBench is originally designed as an evaluation dataset. Here, we train the model directly on
this dataset since the models we use were not trained to perform tool call. Since our training data has the exactly
same distribution as the testing data, our results should not be compared with other models that are not trained
on this dataset.
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The testing set includes 500 instances, and each testing instance requires 5.1 API calls to complete on
average. The average duration of the audio of the user’s speech is 18.71 seconds. We evaluate the
performance using four metrics:

1. Call accuracy: The number of ground truth API calls that are successfully made by the
model, divided by the total number of ground truth API calls. We also calculate the early
call accuracy, defined as the ground truth API calls that are successfully made when the
user is still speaking, divided by the total number of ground truth API calls. Similarly, we
calculate the late call accuracy, where the dividend is the ground truth API calls that are
successfully made after the user finishes speaking. This helps us understand how well the
model uses the time when the user is still speaking; this can be used as a proxy to measure
latency.

2. Success rate: The percentage of user queries that are successfully completed. If all the
ground truth API calls for a user query are successfully made, the task is considered
successful.

3. Correctness: We evaluate if the final response O is accurate and aligns with the API call
responses. Following Zhong et al. (2025), we use GPT-4o to give a score in {0, 1, 2},
indicating if the transcription of the response O is completely incorrect, partially correct, or
completely correct the user’s request.

4. Completeness: We evaluate if the final response O fully satisfies the user’s request. Fol-
lowing Zhong et al. (2025), we use GPT-4o to give a score in {0, 1, 2}, indicating if the
transcription of the response O does not satisfy, partially satisfies, or fully satisfies the user’s
request.

4 COMPARED METHODS

In this section, we introduce the models that we will compare in our experiments, including two
variants of the SHANKS models. Additionally, for each task in Section 3.1 and 3.2, we include
a scenario-specific baseline model. The training details and hyperparameters are included in Ap-
pendix B.

4.1 SHANKS-E2E

We fine-tune an end-to-end (E2E) SLM to make it able to think while listening. We will use Qwen-
2.5-Omni (Qwen-omni for short) (Xu et al., 2025a), one of the best open-sourced end-to-end SLMs,
in our experiment. Qwen-omni is a thinker-talker SLM. The thinker takes speech representation
extracted by a speech encoder (Chu et al., 2024) as the input and generates text tokens. The talker
functions like a text-to-speech (TTS) model, taking the hidden representation from the thinker as the
input and generating the output speech.

Originally, Qwen-omni is not capable of performing unspoken thinking – every token (and its
corresponding hidden representation) generated by the thinker will be sent to the talker model and
synthesized into speech. After fine-tuning the thinker model on the training dataset mentioned before,
the model will learn to enclose the unspoken thinking process within <think> and </think>.
Since we only want the Qwen-omni to speak out the response tokens, we only pass the response
tokens and their hidden states to the talker.

As stated in Section 2.1, SHANKS uses the time when the user is speaking the next speech chunk
Si+1 to generate the thinking chunk Ri, so the number of thinking tokens in Ri cannot exceed
tchunk × ntps, where ntps is the number of tokens the model can generate per second.3

4.2 SHANKS-CASCADE

We set up a cascade version of SHANKS. Precisely, we cascade an ASR (Whisper-large-v3 (Radford
et al., 2023)) with a stronger text-only LLM, Qwen-2.5-7B-Instruct (Qwen et al., 2025), to make the

3The tokens in the API call responses are not included in the tchunk × ntps limit since these are not the
tokens generated by the SLM itself. For simplicity, we do not consider the API call latency, as our environment
already prepares all the ground truth API responses.
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LLM generate thinking chunks while reading the partial transcription. Qwen-2.5-7B-Instruct and
Qwen-omni are fine-tuned from the same base model, while Qwen-2.5-7B-Instruct are fine-tuned on a
much larger reasoning dataset. This baseline allows us to know what the performance of SHANKS can
be if we use a model with better reasoning ability as the backbone. The training data of SHANKS-E2E
and Cascade are almost the same, only differing in the input modality.

4.3 SCENARIO-SPECIFIC BASELINES

4.3.1 BASELINE FOR INTERRUPTION

We fine-tune a baseline model using Qwen-omni, which we name ”No-thinking”. We fine-tune
it to predict whether it should interrupt the user without any thinking. The model is trained to
predict special tokens, [NO INTERRUPT] or [INTERRUPT], to indicate whether the model should
interrupt the user, given chunked user input speech. This can be thought of as SHANKS while the
thinking chunks only contain a [NO INTERRUPT] or [INTERRUPT] special token.

We do not compare with other models since there are no other models that can interrupt the user.
While some full-duplex SLMs should be able to interrupt the user by design (Défossez et al., 2024),
we find that these models cannot interrupt the user at all. We also find that closed-source models like
GPT-4o cannot interrupt the user when the user is still talking.

4.3.2 BASELINE FOR TOOL CALL

For this baseline, we fine-tune a model using Qwen-omni that takes the full user speech and then
makes all the API calls. We call this model ”Call-after-listen”. This serves as a baseline that
waits until receiving the full user input and then begins to make API calls; this is how existing
tool-augmented models operate. During inference, this model takes the complete user query and then
iteratively makes API calls and receives the responses until the model thinks all necessary API calls
are made, and then generates the final response.

5 EXPERIMENT RESULTS

5.1 RESULTS FOR SCENARIO 1: INTERRUPTING USER TURN

The results for interrupting the user turn are presented in Table 1. We have the following observations.

SHANKS is more likely to interrupt on the wrong subset. Comparing the interruption ratio of
SHANKS on the correct and wrong subsets, the interruption ratio is 54.2% higher on the wrong subset.
This shows that SHANKS is indeed capable of capturing the errors in the user’s speech and interrupt
appropriately. Based on the valid interruption ratio for the wrong subset, about 2 out of 3 interruptions
made by SHANKS are valid. Interesting, on the correct subset, the valid interruption ratio is non-zero.
By looking into the instances in the correct subset, we find that even if their final answers are correct,
sometimes their intermediate reasoning may be odd or ambiguous, and the model will interrupt and
ask for clarification. Prior works also reported that even if the final answer of the model is correct,
the CoT reasoning may be wrong (Golovneva et al., 2023). In this case, the LLM judge treats this
kind of interruption as valid.

SHANKS’ interruption latency shows that the model mostly interrupts after the error occurs.
On the wrong subset, the interruption latency of SHANKS-E2E is 5.08 seconds on average. In
Figure 5 in the Appendix, we further plot the distribution of the interruption latency. We find that
the interruption latency on the wrong dataset is left-skewed, where more samples fall on the right
proportion of the distribution and have a positive interruption latency. This indicates that most
interruption happens later than the first error.

A qualitative example in Figure 3 shows that SHANKS-E2E can interrupt the user when there is
a mistake. To allow the readers to have a better idea of how SHANKS interrupts the user, we show
an example in Figure 3. When the user unfolds the question, SHANKS already starts thinking about
the math question. For example, when t ∈ [4tchunk, 5tchunk], the model’s thinking already calculates
several intermediate variables, including the number of total petunias and sweet potato vines. When
the user finishes stating the question after t = 6tchunk, the model already completes the calculation
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Table 1: Results for interrupting the user. We report the interruption ratio and valid interruption ratio
in percentage, and the interruption latency in seconds. tchunk = 4.0 in the top three rows.

Correct Subset (1280) Wrong Subset (1140)

Methods
Interrupt Valid interrupt Interrupt Valid interrupt Interruption

ratio (%) (↓) ratio (%) (↑) ratio (%) (↑) ratio (%) (↑) latency (s)

No-thinking 1.4% 16.7% 13.8% 26.8% 6.46
SHANKS-E2E 30.6% 25.7% 84.8% 63.9% 5.08

SHANKS-Cascade 24.9% 40.3% 86.1% 78.3% 6.90

Ablations for SHANKS-E2E

tchunk = 3 41.1% 21.4% 88.7% 60.3% 1.56
tchunk = 5 26.9% 36.9% 83.1% 66.2% 8.19

and has the correct answer in its mind. The model also correctly identifies the user’s error in falsely
calculating that there are 25 petunias and interrupts the user during t ∈ [12tchunk, 13tchunk].

Interruption without thinking leads to much poorer performance. The performance of the
no-thinking baseline is much worse than SHANKS, which performs reasoning before interrupting.
The no-thinking baseline has a much lower interruption ratio on the wrong subset, and the valid
interrupt ratio is also much lower than SHANKS. This shows that thinking before interruption is
important, justifying the design of SHANKS.

Cascade version of SHANKS with stronger LLM leads to the best performance. When using
Qwen-2.5-7B-Instruct as the backbone model for SHANKS, the performance can be even better.
The interruption ratio on the correct subset is lower, and the valid interruption ratio on the wrong
subset also grows higher. This shows that the interruption ability of SHANKS is mostly related to
the reasoning ability of the backbone model, and using a stronger reasoning LLM can improve the
performance.

Varying tchunk at inference time does not significantly affect the performance. When con-
structing the training data, we fix tchunk = 4 seconds. Here, we ask whether we can vary tchunk at
inference time. Since the thinking of SHANKS always lags behind the latest user speech by tchunk
seconds, changing tchunk can affect how soon the SLM can hear the latest user speech and affect the
response latency. As an ablation, we change tchunk to 3 and 5 during inference without retraining
SHANKS-E2E. The results are shown in the bottom two rows in Table 1. On the wrong subset, we do
not find the interrupt ratio and valid interrupt ratio to change significantly compared with tchunk = 4.
Interestingly, we find that the interrupt latency on the wrong subset for tchunk = 3 is the smallest,
while the tchunk = 5 has the largest interrupt latency.

5.2 RESULTS FOR SCENARIO 2: MAKING TOOL CALLS WHEN LISTENING

Next, we move on to the second scenario: making tool calls when listening. The experiment results
are presented in Table 2. We summarize the main findings as follows:

SHANKS successfully makes at least 56.9% of API calls when the user is still speaking. Among
the successful API calls made by the two SHANKS models, about 80% to 90% of the API calls are
made during the user speech. In the example in Figure 4, SHANKS-E2E makes four out of six API
calls when the user is still speaking. Compared to the call-after-listen baseline, which makes all the
API calls after the user turn finishes, SHANKS can significantly reduce the response latency by using
the time the user is speaking to make tool calls.

Call-after-listen has a higher success rate and response quality. While SHANKS elegantly uses
the user speaking time to make API calls, the success rate and response quality (correctness and
completeness) lag behind call-after listen. We find that this is because during inference, if the API
call fails during Ri, SHANKS seldom retries the failed API call in future Rj , where j > i. On the
other hand, the call-after-listen baseline is more likely to retry failed API calls.
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I want to solve following question. Catherine has five

Now I know that the petunias cost $3 each, and the sweet potato vines also have a cost, but the user hasn’t specified it yet. This seems to be leading 
toward a financial calculation problem involving the total cost of filling the baskets. I can already start calculating the cost of the petunias: 5 baskets × 3 
petunias per basket × $3 per petunia = $45 for the petunias. I will wait for the user to provide the cost of the sweet potato vines to complete the calculation.

all five hanging baskets? Here is my solution. Catherine

hanging baskets to fill. In each basket, she wants to add three

The user’s tone is neutral, and they are introducing a question they want to solve. The question involves someone named Catherine, who has five of 
something. The user has not yet specified what these five items are or what the problem entails. It could be a math problem, a logic puzzle, or a real-life 
scenario. I will wait for more details to understand the context and determine the nature of the problem. If the user provides a specific question, I will aim to 
solve it step by step and compare my solution with theirs.

The user is introducing a question involving someone named Catherine, who has five of something. It is unclear what the five items are or what the question 
is about yet. I will wait for more details before forming any thoughts or calculations.
petunias and two sweet potato vines. The petunias

Now I know that Catherine has five hanging baskets to fill, and she wants to add three of something to each basket. The user hasn’t specified what the 
three items are yet—whether they are plants, decorations, or something else. This could lead to a math problem involving multiplication or distribution. I will 
wait for more details to clarify the situation and determine the exact question.

cost $3 a piece and the sweet potato vines cost

Now I know that Catherine has five hanging baskets, and in each basket, she wants to add three petunias and two sweet potato vines. The user is likely 
setting up a math or logic problem involving the total number of items needed. I can already calculate the total number of petunias and sweet potato vines 
required:  - Petunias: 5 baskets × 3 petunias per basket = 15 petunias.  - Sweet potato vines: 5 baskets × 2 sweet potato vines per basket = 10 sweet potato 
vines.   I will wait for the user to finish the question to confirm if this is the intended calculation or if there are additional details
$2.50 a piece. How much will she spend filling

Now I know the cost of each petunia is $3, and the cost of each sweet potato vine is $2.50. I can calculate the total cost for filling the baskets:  
- Petunias: 15 × $3 = $45.  
- Sweet potato vines: 10 × $2.50 = $25.  

Total cost = $45 + $25 = $70.  
I have the answer and can provide it to the user if they ask.

has five hanging baskets to fill and each basket gets

Now I have all the necessary information to calculate the total cost of filling the five hanging baskets.  
1. Cost of petunias:  
   - 5 baskets × 3 petunias per basket × $3 per petunia = $45.  
2. Cost of sweet potato vines:  
   - 5 baskets × 2 sweet potato vines per basket × $2.50 per sweet potato vine = $25.  
3. Total cost:  
   - $45 (petunias) + $25 (sweet potato vines) = $70.  
The total cost for filling all five hanging baskets is $70. I will now listen to the user's solution and compare it with mine. If there is any mistake in their 
solution, I will interrupt them.
three petunias and two sweet potato vines. That's five

The user is beginning to explain their solution. I will compare their solution to mine as they proceed. So far, I know the total cost is $70, based on my 
calculations. If the user makes any errors in their solution, I will interrupt them immediately to correct it. I will wait for more details from their explanation 
before making any judgments.

vines are $2.50 each, so 25 vines

Hold on, I think there might be a discrepancy. Earlier, you mentioned 5 baskets with 3 petunias each, which totals 15 petunias, not 25. At $3 each, 
that would cost $45, not $75. Could you clarify this?

baskets times three petunias and two sweet potato vines

The user is reiterating the details of the problem: each basket gets three petunias and two sweet potato vines. This matches the information I already have. 
I will continue to listen to their solution and compare it with my own calculation of $70. If they make any errors, I will interrupt them.
per basket, which totals 25 flowers. The

The user is correctly stating the quantities of petunias and sweet potato vines per basket. This aligns with the information provided earlier. I will continue to 
listen to their solution and verify if their calculations match mine. If they make any errors, I will interrupt them immediately.
petunias cost $3 each, so 25 petunias

The user is now calculating the total number of flowers per basket, which is 3 petunias + 2 sweet potato vines = 5 flowers per basket. This aligns with my 
understanding so far. I will continue to listen to their solution and verify if their subsequent calculations match mine. If they make any errors, I will interrupt 
them immediately.
at $3 each is $75. The sweet potato

The user is now calculating the cost of the petunias. They correctly state that there are 25 petunias in total (5 baskets × 3 petunias per basket). At $3 each, 
the cost for the petunias is 25 × $3 = $75. However, this contradicts my earlier calculation, where the cost of the petunias was $45 (5 baskets × 3 petunias 
per basket × $3 per petunia). I need to interrupt the user to clarify this discrepancy.

Figure 3: An example from the interruption scenario in Section 3.2. The chunks in red are the
transcriptions of a user describing a math problem and attempting to solve it step-by-step. The
thinking chunks (in green) and interruption response (in orange) are generated by SHANKS-E2E. For
each time slot from ntchunk to (n+1)tchunk, the chunks in green (SLM thinking chunks) and orange
(output response) happen sequentially, while the user speech chunk (in red) happens concurrent to
other blocks in the same time slot.

Combining SHANKS and call-after-listen yields the best performance. To solve the previously
observed issue, a simple method is to use SHANKS when the user is still speaking and back off to
call-after-listening when the user’s speech ends. Precisely, when the user is still speaking, we use
SHANKS to call APIs while listening, and only keep the successful API calls and their responses.
When the user finishes their speech, we switch to the call-after-listening mode, where the input to the
SLM is the complete user speech. We also feed the success API calls and responses previously made
by SHANKS to the model, as if the call-after-listen model had made those API calls by itself. Based
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Table 2: Results for API calls. “Early” and “Late” are computed over the total set of ground-truth
API calls; they need not sum to 100% because some calls may be incorrect.

Method Call accuracy (%) Success rate Correctness Completeness
Early Late Total (%) (0-2) (0-2)

Call-after-listen 0.0 86.5 86.5 63.2 1.17 1.37
SHANKS-E2E 56.9 14.4 71.3 35.2 0.79 1.00

SHANKS-CASCADE 63.9 5.4 69.3 34.9 0.73 1.00
SHANKS+Call-after-listen 57.3 32.8 90.0 62.3 1.31 1.43

Help me check the details of the cheapest flight from Hangzhou to Seoul

The cheapest flight from Hangzhou to Seoul on December 10th, 2024, costs $77.44 USD. It departs from Hangzhou at 9:05 PM and arrives at Incheon 
International Airport in Seoul at 1:55 PM on December 11th, 2024. The flight includes one checked bag (up to 50.7 lbs) and one carry-on bag (up to 11 lbs). 
For car rental near Incheon International Airport, the cheapest option is available for pickup at 3:00 PM on December 11th, 2024, and return at the same time 
and location on January 18th, 2025.

on December 10, 2024, and the car rental

<tool_call>{"name": "Search_Flight_Location", "arguments": {"query": "Hangzhou"}}</tool_call>

(API call responses. Omitted for simplicity)
All the tool calls have been made. I will wait for additional information from the user.

information near Seoul airport. I want to rent a
The user is still providing the information. There are no additional information that is sufficient to make another tool call.

car at the airport at 3pm on the day I arrive,

<tool_call>{"name": "Search_Flights", "arguments": {"fromId": "HGH.AIRPORT", "toId": "ICN.AIRPORT", "departDate": "2024-12-10", "sort": "CHEAPEST"}}
</tool_call>

(API call responses. Omitted for simplicity)
All the tool calls have been made. I will wait for additional information from the user.

and return it at the same time and place, 7 days later.

<tool_call>{"name": "Search_Car_Location", "arguments": {"query": "Incheon International Airport"}}</tool_call>
(API call responses. Omitted for simplicity)

All the tool calls have been made. I will wait for additional information from the user.

<tool_call>{"name": "Get_Flight_Details", "arguments": {"token": "(omitted for simplicity)"}}</tool_call> 

(API call responses. Omitted for simplicity)
The user has provided the information. I have already made all the necessary tool calls. I am ready to generate the final response to the user.

<tool_call>{"name": "Search_Flight_Location", "arguments": {"query": "Seoul"}}</tool_call>
(API call responses. Omitted for simplicity)

<tool_call>{"name": "Search_Car_Rentals", "arguments": {"pick_up_latitude": 37.4492, "pick_up_longitude": 126.4509, "drop_off_latitude": 37.4492, 
"drop_off_longitude": 126.4509, "pick_up_date": "2024-12-11", "drop_off_date": "2025-01-18", "pick_up_time": "15:00", "drop_off_time": "15:00"}}</tool_call>

(API call responses. Omitted for simplicity)

Figure 4: An example user query from ComplexFuncBench (in red), including the unspoken thinking
process (in green) and the spoken final response (in orange) from SHANKS-E2E. For each time slot
from ntchunk to (n+1)tchunk, the chunks in green (SLM thinking chunks), blue (API call responses),
and orange (output response) happen sequentially, while the user speech chunk (in red) happens
concurrent to other blocks in the same time slot. The t = T means the time when the user’s speech
terminates.

on the full input speech and previous success API calls and responses, the model continues to make
the remaining API calls. Since some API calls have already been made by SHANKS when the user
speaks, this combined method enjoys the thinking-while-listening advantage of SHANKS.

In the last row in Table 2, we show the result of combining SHANKS-E2E with call-after-listening.
This combined method has a high number of early call accuracy while also having a higher task
success rate and response quality. Among the API calls that are successful, over 60% of API calls are
made during the user speech, while only 40% of the API calls are made after the user finishes. This is
in stark contrast to call-after-listen, where 100% of the successful API calls are made after the user
finishes, resulting in a much higher latency. In summary, the combined method can reduce the user
wait time while maintaining the performance.

6 RELATED WORKS

Thinking before responding has been widely explored in text-only LLMs (OpenAI, 2024c; Guo
et al., 2025). Recently, this ”think then respond” paradigm has been applied to audio-aware language
models, which takes speech (or audio) as the input and output texts (Xie et al., 2025). Note that these
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audio-aware language models, which only output text, are different from the speech-in-speech-out
SLMs focused on in our paper. While thinking before responding can improve the response quality
and yield significant performance on many challenging benchmarks (Lightman et al., 2024; Sakshi
et al., 2025), thinking before responding creates great response latency. As a result, it is impractical
to directly apply thinking-before-responding to SLMs, speech-in-speech-out models, which require
real-time and low-latency interaction (Li et al., 2025; Xu et al., 2025a;b). Developing reasoning
methods that preserve real-time interaction in SLMs remains an open problem.

Concurrent to us, Chiang et al. (2025) introduce thinking to SLMs by a thinking-while-speaking
method called STITCH. STITCH uses the fact that a chunk of audio in the speech response takes less
time to generate than it does to play to the user, and the model can use the remaining time to generate
thinking tokens when the SLM is still speaking. While both SHANKS and STITCH explore unspoken
thinking processes for SLMs, the main distinction is when the thinking happens. In SHANKS, the
thinking process happens when the user is still speaking, while STITCH thinks when the SLM is
speaking. In fact, the two methods can be combined: an SLM can think when listening and speaking.
We believe this will be the future of SLM, and we leave this as a promising future direction

Another concurrent work released on arXiv less than one week ago (10/02/2025), Stream RAG (Arora
et al., 2025), also studies calling tools (web search and knowledge graph APIs) during the user’s
speech. This is similar to our second scenario introduced in Section 3.2. However, Stream RAG
focuses on when to issue retrieval/tool queries while listening and does not introduce an explicit
silent chain-of-thought (‘thinking’) process like we do. In contrast, our paper studies a broader
thinking-while-listening paradigm, with tool-calling as one application, and show benefits such as
improved user-interruption decisions.

7 CONCLUSION, LIMITATIONS, AND FUTURE WORK

In this paper, we introduce SHANKS, a framework that enables SLMs to think while listening.
SHANKS achieves thinking-while-listening by chunking the user input speech and progressively
reasoning over the available user inputs. When the user is speaking, SHANKS is generating thinking
chunks for all previous input speech, achieving thinking while listening. We demonstrate the potential
of SHANKS on two scenarios: First, SHANKS can listen to the user solving a math problem step-by-
step, and interrupt the user when the user is making a mistake. Second, we focus on a tool-augmented
task-oriented dialogue setting and show that SHANKS can listen to the user speech and evoke necessary
API calls when the user is still speaking. On ComplexFunxBench, SHANKS successfully calls more
than half of the APIs that are required to complete the user’s request when the user is still speaking.
This reduces the response latency, as the model only needs to call the remaining half APIs after the
user has finished.

While SHANKS shows great potential in improving the user-SLM interaction, we see the following
limitations of the method. First, SHANKS requires the user’s speech to have certain structures: the
user’s speech needs to be long enough to allow the model to perform meaningful reasoning when
listening, and the information in the user’s speech needs to be able to be processed in a sequential
order. This kind of speech can naturally occur, as shown in the two scenarios we studied.

Next, SHANKS uses a fixed chunk size to segment the user input speech. The chunking nature of
SHANKS means that SHANKS always lags behind the user’s speech by tchunk seconds, incurring
latency in the thinking process. We encourage future work to reduce the latency between thinking
and listening by using more sophisticated chunking methods.

Last, the goal of the user might be unclear when the user’s speech is not completed, and the thinking
tokens generated during listening may be redundant and not always be useful to address the goal of
the user. While thinking during listening does not incur additional latency after the user’s speech
ends, SHANKS still significantly increases the compute cost during inference. Although SHANKS has
some limitations, we believe that our effort in proposing a novel modeling method, thinking while
listening, together with the reasonable scenarios and convincing results, already contributes greatly to
the research community by shedding light on a potentially fruitful research direction.
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A ENCODING THE USER SPEECH

In the main content of the paper, we say that we chunk the user input audio into fixed-size chunks
of tchunk seconds. In fact, what we do is chunking at the level of feature representation instead of
the level of the audio waveform. Precisely, when encoding the i ≥ 2 speech chunks Si, we feed the
full speech through the audio encoder, and only take the speech representation for the corresponding
speech chunk. If we directly chunk the audio waveform and encode each audio chunk independently,
the representation of later audio chunks will not be able to depend on the earlier audio chunks, which
can potentially lead to performance degradation.

B DETAILS IN TRAINING

We fine-tune the models using the Llamafactory (Zheng et al., 2024) toolkit. When generating the
training data using GPT-4o, we do not feed the audio of the user’s speech into GPT-4o. Instead, we
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feed the transcription of the speech chunks. This is because using the speech chunk will increase
the cost and time to call the API. To obtain the transcription of each chunk, we use Whisper-large-
v3 (Radford et al., 2023) to obtain the transcription and timestamp for each word in the user speech,
and then segment the transcriptions into chunks based on the timestamp. While the timestamp
obtained from Whisper may not be very precise, this is already sufficient for preparing the training
data.

B.1 FINE-TUNING FOR INTERRUPTION

To prepare the training data, we randomly sample 5K samples from Tulu-3-SFT-Math-Grade (Lambert
et al., 2024), which can be loaded from Huggingface datasets (Lhoest et al., 2021): https://
huggingface.co/datasets/allenai/tulu-3-sft-personas-math-grade. We
follow the procedure detailed in Section 3.1.2 to construct the training data. We additionally filter out
audios that are longer than 80 seconds, so the final training dataset is slightly less than 5K.

We fine-tune the thinker on the training data for two epochs on 8 A100 GPUs. The effective batch
size is 64. We set the learning rate to 1.0e− 4 with cosine learning rate scheduling and a 0.1 warm-up
ratio (Loshchilov & Hutter, 2017). The same training hyperparameters are used across all three
models, including the SHANKS-E2E, SHANKS-Cascade, and no-thinking model.

The training data is mostly generated by GPT-4o. We include the prompts to generate the reasoning
chunks in Table 3 and 4, the prompt to generate the interruption in Table 5, and the prompt to generate
the response without interruption in Table 6.

B.2 FINE-TUNING FOR TOOL CALLS

We use the procedure detailed in Section 3.2.2 to construct the training data. The training data consists
of 500 samples. The prompt used to determine when an API call can be made is shown in Table 8.
The prompt used to generate the final response is shown in Table 9.

For the think-after-listen and SHANKS-E2E model, we fine-tune them using LoRA (Hu et al., 2022),
as the sequence length for this dataset is very large and full fine-tuning will result in out-of-memory.
We also fine-tune the LM head and the token embedding of the talker model; otherwise, the model
will not be able to recognize and generate special tokens. For the SHANKS-Cascade model, we
fine-tune all the parameters. As the training dataset is smaller, we fine-tune the model for 10 epochs,
while other training hyperparameters follow those in Appendix B.1.

C DETAILS IN EVALUATION

C.1 EVALUATION DETAILS FOR INTERRUPTION

To determine the time of interruption tinterrupt when evaluating the interrupt latency, we apply the
following procedure. We use Whisper-large (Radford et al., 2022) to obtain the timestamp of each
word in the user speech from the testing set, and we use GPT-4o to determine when the first error in
the user speech occurs by giving GPT-4o the question, the ground truth answer, the transcription of
the user speech, and the word-timestamp alignment. The prompt used to determine the first error
time terror is shown in Table 7.

To evaluate the valid interrupt ratio, we use GPT-4o as the judge. The prompt used to determine
whether an interruption is valid is shown in Table 10.

C.2 EVALUATION DETAILS FOR TOOL CALL

When evaluating the SHANKS models, when the user is still speaking, each thinking chunk can only
include at most 320 tokens generated by the SLM itself. In some cases, the API call augments may
include very long tokens, which can easily exceed the token limit for the thinking chunk, and the
API call will be incomplete and unsuccessful. While we do not specifically handle this kind of case,
there is a simple workaround that can resolve the above issue: The long arguments for the API call
generated by the model must be the returned value of previous tool calls, so we can include previous
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API call responses in a reservoir of the draft for speculative decoding (Leviathan et al., 2023; Zhao
et al., 2024), and use speculative decoding to speed up the inference speed.

ComplexFuncBench is originally designed to evaluate a model’s ability to parse long-context infor-
mation, and the API call response can be very long. However, since Qwen-omni only has a context
length of 32,768, once the token exceeds this limit, we directly terminate the inference for a tested
instance. As a result, some of the testing samples we evaluate may fail because the number of tokens
exceeds the max sequence length of the model.

60 40 20 0 20 40
Interruption Latency

0

200

400

600

800

1000

Co
un

t

Figure 5: The interruption latency for SHANKS. The bars in red are the results on the wrong subset,
while the bars in green are the results on the correct subset. One can observe that the red bars are
mostly positive, meaning that the model tends to interrupt after the first error occurs.
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# Generate Internal Thinking While Listening

## Task Introduction
Humans are capable of thinking while listening to others speak. Based on the partial information received, we parse important
details, clarify ambiguities, recall relevant facts, and compute intermediate variables. Your task is to simulate this
process. You will be the previous chunks of user’s speech in text, and you will also see your previous inner thinking when
listening to those chunks. Your job is to generate the next internal thinking as if you had listened up to the newest chunk.

When generating internal thinking spans, follow these guidelines:
1. The inner thinking span should be fewer than 400 words.
2. Your internal thinking should reflect the user’s emotion, intent, and what you already know from the user. If any
relevant information can be recalled or intermediate variables can be calculated based on current information, include them
in your inner thinking.
3. The inner thinking should read more like full, coherent sentences rather than shorthand notes. Using short notes will be
very hard to understand and possibly making logical errors.
4. If the user’s query involves a question, you **must generate your own step-by-step answer in the internal thinking before
the user finishes speaking**.
5. Later internal thinking spans must not repeat information already covered in earlier ones. However, if later
transcription spans update or contradict earlier information, explicitly point that out and correct it. You may start with
phrases like \Wait, the user previously..., but now...".
6. Always think independently in your internal thinking. When the user is providing there solution, you should have you own
solution and then compare your own solution with the user’s solution. If you identify any error, you should interrupt the
user immediately. Indicate the interruption by ending your internal thinking with the special token [INTERRUPT].

---

## Samples

### Example 1:
User (partial) input transcription 1
Betty is saving money for a new wallet which

Prior Inner Thinking 1
The user’s tone is neutral. The user describes a situation where someone named Betty is saving money for a new wallet. The
user hasn’t finished yet. Perhaps they want me to give advice on how to save money.

User (partial) input transcription 2
costs $100. Betty has only half of the money she needs.

Prior Inner Thinking 2
Now the user gives more information. We know the wallet Betty wants to buy costs $100, and she has only half of that. I can
calculate this: $100 / 2 = $50, so she currently has $50. The user’s intent is still unclear.

User (partial) input transcription 3
Her parents decided to give her $15 for that

Inner thinking to Generate
Well, it seems that Betty’s parents will contribute as well. She will get $15 from them. Now she has $50 + $15 = $65. She
still needs $100 - $65 = $35. It seems the user wants to know how to plan Betty’s budget.

### Example 2:
User (partial) input transcription 1
I want to answer the following math question: Is the function f(x) =

Prior Inner Thinking 1
The user uses a neutral tone and describes a math question they want to solve. I will try to solve the question when the user
is speaking. I can verify if the user’s solution is correct by comparing my solution with the user’s solution. The question
is about a function in x. The user has not finished yet. I will wait until they complete the question.

User (partial) input transcription 2
4xˆ2 + 4x + 1 always above the x axis?

Prior Inner Thinking 2
The user has finished describing the question. They want to determine if the function f(x) = 4xˆ2 + 4x + 1 is always above
the x-axis. I am ready to answer this question. Let’s compute the discriminant: D = bˆ2 - 4ac = 4ˆ2 - 4 * 4 * 1 = 16 -
16 = 0. The function touches the x-axis at one point. I have the solution. Since the user wants to solve the question
by themselves, I will not interrupt the user and listen to the solution. However, I will interrupt the use if there is any
mistakes.

User (partial) input transcription 3
Here is my solution: Based on the formula D = bˆ2 - 2ac,

Inner thinking to Generate
Now I see that the user wants to solve the question themselves. I should verify whether their solution is correct. The user
says the formula is D = bˆ2 - 2ac, but that’s incorrect. The correct formula is D = bˆ2 - 4ac. The user has made a mistake,
and I need to interrupt them. [INTERRUPT]

Table 3: Prompt for generating the thinking chunks in the training data for the interruption experiment
(part 1).
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### Example 3:
User (partial) input transcription 1
Bella bought stamps at the post office. Some of the

Prior Inner Thinking 1
The user uses a neutral tone and describes a math question he wants to solve. The
question is to The user is introducing a word problem involving someone named Bella
and her purchase of stamps. It seems like a math problem, likely about counting.
The exact numbers and relationships haven’t been shared yet. I will hold off making
any calculations until I know more about the stamps.

User (partial) input transcription 2
stamps had a snowflake design, some had a truck design,

Prior Inner Thinking 2
We now know there several types of stamps: snowflake and truck. There seems to
be more, but the user is still speaking. There are still no numbers provided, so I
can’t compute yet. I will wait for more information.

User (partial) input transcription 3
and some had a rose design. Bella bought 11

Prior Inner Thinking 3
Now we know that there are three types of stamps: snowflake, truck, and rose.
Bella bought 11, but it is unclear which this number corresponds to. I will wait
for the complete detail from the user to be sure before computing.

User (partial) input transcription 4
snowflake stamps. She bought 9 more truck stamps

Prior Inner Thinking 4
Now I know that Bella bought 11 snowflake stamps. I am also told she bought 9 more
truck stamps than snowflake stamps. I can calculate the number first: she bought
11 + 9 = 20 truck stamps. The information we have now is:
- Snowflake: 11
- Truck: 20
The user is still talking, and I am waiting for more information.

User (partial) input transcription 5
than snowflake stamps, and 13 fewer rose stamps than

Prior Inner Thinking 5
Now the user states that Bella bought 13 fewer roses than something, but it is
unclear what is compared here. I will wait until the user finishes.

User (partial) input transcription 6
truck stamps. How many stamps did Bella buy in all?

Inner thinking to Generate
Now I know that Bella bought 13 fewer roses than the truck stamps. There are 20
truck stamps, so I can calculate the number of rose stamp is 20 - 13 = 7. The user
finishes with a question: total number of stamps. I already have all counts:
- Snowflake: 11
- Truck: 20
- Rose: 7
Total = 11 + 20 + 7 = 38 stamps. I have the answer and I can provide it to the
user.

---

This is the end of the examples. Now, this is the (partial) user input
transcription, and you need to generate a inner thinking. You do not need to
explain why the inner thinking you generate is a good one. Simply generate a good
one without explaining it.

{interleaved transcription and thinking}

Inner thinking to generate (Do not generate anything else other than the inner
thinking)

Table 4: Prompt for generating the thinking chunks in the training data for the interruption experiment
(part 2).
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# Task: Interrupt the user to correct an error

A user is talking to an AI assistant. You will be given a partial user turn. There is an error in the user turn and the AI
assistant has identified that error. The AI assistant needs to interrupt the user.

Your job is to generate the response for the AI assistant that interrupts the user’s turn. You will be given:
(1) A (possibly incomplete) user turn
(2) The inner thinking of the AI assistant. This inner thinking hasn’t been spoken out by the AI assistant and is only
silently kept in the assistant’s mind. We provide you this inner thinking for you to better craft a response.

When correcting and interrupting the user, be precise about what the error is and how to correct it. You only need to
generate the response without saying anything else. The conversation between the user and the assistant is in spoken form,
so you need to make your response easy to be spoken while not overly informal and colloquial.

## Example

#### User (partial) input
I want to answer the following math question: Is the function f(x) = 4xˆ2 + 4x + 1 always above the x axis? Here is my
solution: Based on the formula D = bˆ2 - 2ac, D = 4ˆ2 - 2 * 4 * 1 = 8 > 0

#### Inner thinking of the assistant
The user uses a neutral tone and describes a math question he wants to solve. The question is to determine if a 2-degree
function is above the x-axis. f(x) = 4xˆ2 + 4x + 1. Let’s use D = bˆ2 - 4ac = 4ˆ2 - 4 * 4 * 1 = 0. So the function happens
to intersect with x-axis at one point. I can answer the user if the user wants me to do so.
But wait, the user themselves want to solve the question, and the user says D = bˆ2 - 2ac, which is clearly wrong. The
correct formula should be D = bˆ2 - 4ac. I should interupt the user here and tell them the correct formula with a friendly
and reminding tone.

#### Assistant Response
Wait, I think the correct formula should be bˆ2 - 4ac, not bˆ2 - 2ac. The coefficient you mentioned was wrong.

## Now it is your turn

#### User (partial) input
{query}

#### Inner thinking of the assistant
{inner thinking}

#### Assistant Response
<Write the interrupting response here. Be precise about the error and the correction; keep it concise and easy to speak. Do
not include anything else.>

Table 5: Prompts for generating an interrupting correction response.

# Task: Generate the spoken response given full user turn and assistant’s inner
thinking

A user is chatting with a voice assistant. Your job is to act as the voice
assistant and generate a valid response that fits in the context. You will be
given:
(1) The full user turn
(2) The inner thinking of the voice assistant. Note that the voice assistant may
generate the inner thinking when the user hasn’t finished, so it is possible that
some contents in the inner thinking is incorrect.

Guidelines:
1. Do not generate anything else except the response.
2. The inner thinking might mention a drafted response. If the drafted response is
still valid considering the full user turn, follow the draft and start the response.
If the draft is invalid considering the full user input, neglect the draft and craft
a response that is suitable.
3. This is a spoken dialogue. Keep the response easy to follow for spoken form.
However, there is no need to deliberately use very colloquial words or phrasing,
making things awkward.

## Input

#### Full user input
{query}

#### Inner thinking of the voice assistant
{inner thinking}

#### Your Response (Act like the voice assistant)
<Write only the final spoken response here>

Table 6: Prompts for generating the response for the interruption application.
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# Task: Detect the first reasoning or calculation error with timestamps

You a user’s query. In the user query, the user describes a math problem and
then attempt to solve the problem by themselves. This user query is in a spoken
form, and I provide you with the transcription. I will also provide you the force
alignment result of the transcription, which corresponds timestamp of each word in
the spoken response.

Your job is to determine where the problem solving process has the first calcaultion
or reasoning error. In your response, you should solve the math problem by
yourself, and carefully check the spoken response. When you see the first error
in the spoken response, use the provided timestamp to determine when the first
error happened. Conclude you respond with: "First error: [time]", where ’time’
is the time where the first error happens. If the user’s problem solving process is
completely correct, please use -1 to indicate that there is no error, i.e., "First
error: -1"

## Example

### User Query
I want to solve the following math question: Natalia sold clips to 48 of her
friends in April, and then she sold half as many clips in May. How many clips did
Natalia sell altogether in April and May? Here is my solution: Our goal is to
calculate the total number of clips sold in April and May. In April, she sold 48.
In May, she sold the half of that, which is 96. So she sold 48 in April plus 96 in
May, making it 144 in total.

### Word-Timestamp
I - 0.00
want - 0.50
...
96. - 36.50
...
total. - 44.00

### Correct Answer
72

### Output
The math problem wants to know how many clips Natalia sold in total. In April, she
sold 48. In May, she sold half as many, so she sold 48 / 2 = 24. In total, she
sold 48 + 24 = 72. In the problem solving process, the user says that ’half of
that, which is 96.’ This is incorrect. The correct number for May should be 24.
This is where the first error occurs. Based on the Word-Timestamp information, the
word 96 is emitted at second.
First error: 36.50

## Now, it is your turn.

### User Query
{question}

### Word-Timestamp
{alignment}

### Correct Answer
{answer}

### Output
<Write the reasoning here and conclude with "First error: [time]">

Table 7: Template for detecting the first error in the interruption task.
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# Task: Earliest possible time to call tools during a spoken user query

You are given a user spoken query, which requires some tool usage for answering.
You will be given the tool calls (including their parameters) which are useful for
responding to the user query. You will also be given the timestamp of each word in
the user’s utterance. Your job is to determine the earliest time that a tool call
can be called when the user is speaking. That is, when the user is still speaking,
the information that has been spoken by the user may already be sufficient enough
to call some of the tools. Your job is to determine the **earliest time** during
the utterance that a tool call can be called. A tool can be called if only if it is
clear what tool should be call and what the paramaters are for the tool call.

### User Spoken Query
{question}

### Time Stamp of Each word
{alignment}

### Tools that needs to be called
{tools}

### Total number of tool calls
{count}

### Output Format
Your response should be a python dictionary. The key of this dictionary is an
integer index of the tool call shown above, and the value is the earliest time the
tool can be called. Your response should only include a python dictionary. The
first character in your response should be the left bracket while the last character
in your response should be the right bracket. Your response should be able to be
directly converted into a python dictionary using eval(). If there are N tools that
need to be called, your output dictionary should have N items. I also provide you
the number of tool calls, so you should verify if your output dictionary matches the
number of tool calls.

### Your response:
<Return only a python dictionary, e.g., {0: 12.5, 1: 18.0}>

Table 8: Template for checking the earliest callable time for an API.

# Task: Generate the final user-facing response from tool call results

You will be given a user query. The user query can only be responded based on
the results of some external tool call. I will show you the tool calls and call
responses. Your task is to generate a final response to the user based on the tool
call results. The final response to the user should satisfy the user’s original
query and omit unnecessary information. Some intermediate processes in the tool
call may simply be some process to resolve the variables, and they are not necessary
to be included in the final response to the user.

### User Query
{transcription}

### Previous API Calls
{previous tool calls}

### Response to the User Query (Only provide the response. Do not include anything
else.)
<Write only the final user-facing response here, distilled from the tool results and
satisfying the query. Exclude setup steps and variable-resolution details.>

Table 9: Prompts for generating a final response O in the API call application.
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# Task: Judge if the assistant’s interruption is reasonable

A user is speaking to a voice assistant. When the user is speaking, the assistant
tries to interrupt the user. Your job is to judge if the assistant is interrupting
the user in a reasonable way. A reasonable interruption is when the user says
something wrong and ambiguous, and the assistant is trying to help correct or
clarify the user’s statement.

Here is the user’s speech before the assistant interrupted:
{user speech before interrupt}

Here is the assistant’s speech that attempts to interrupt the user:
{assistant speech after interrupt}

Please judge if the assistant is interrupting the user in a reasonable way. If the
assistant is interrupting the user in a reasonable way, return "yes". Otherwise,
return "no". Please provide some explanation for your judgment and conclude with
"Final verdict: Yes/No". A valid interruption is when the user is indeed making a
mistake and the assistant is trying to help correct or clarify the user’s statement.

### Output
<Write your explanation here. Conclude with "Final verdict: Yes" or "Final
verdict: No">

Table 10: The prompt used for judging whether an interruption is reasonable.
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