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Deep Learning for Human Language Processing
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So many different tasks ......

Speech Recognition

Speaker Recognition
Text-to-Speech (TTS)
Denoising

Speech Separation

Voice Conversion (VC)
Spoken Term Detection (STD)
Speech Question Answering
Speech Translation

Spoken Language Understanding

https://youtu.be/tFBrqPPXWzE
Coreference Resolution
Syntactic Parsing
Semantic Parsing
Chatbot
Summarization
Text Style Transfer
Retrieval
Question Answering
Text Translation

Dialogue State Tracking



There are around 7,000 languages in the world.



Framework of Pre-training

Pre-train

Develop general
Unlabeled data purpose knowledge

Fine-tune
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Pre-training for NLP
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This is not a complete survey!

Pre-train, Prompt, and Predict: A Systematic Survey of Prompting Methods in
Natural Language Processing

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, Graham Neubig
https://arxiv.org/abs/2107.13586

A Primer in BERTology: What we know about how BERT works

Anna Rogers, Olga Kovaleva, Anna Rumshisky https://arxiv.org/abs/2002.12327

Pre-trained Models for Natural Language Processing: A Survey

Xipeng Qiu, Tianxiang Sun, Yige Xu, Yunfan Shao, Ning Dai, Xuanjing Huang

https://arxiv.org/abs/2003.08271



Pre-training for NLP

Pre-train Fine-tune

Sentiment
analysis
—_— poS
Question
>

Unlabeled text data
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Pre-training for NLP - Fine-tune (Example)

class
1

Linear

f
t

I
[CLS)

Random
initialization

Better than random

Init by pre-train
A

BERT

1 f

W, W) W3

sentence

Input: sequence
output: class

Example:
Sentiment analysis

: this is good

positive

>_ This is the model
to be learned.

-/



Pre-training for NLP

General Language Understanding

Evaluati LUE
valuation (GLUE) e Corpus of Linguistic Acceptability (ColLA)

https://gluebenchmark.com/ » Stanford Sentiment Treebank (SST-2)
* Microsoft Research Paraphrase Corpus (MRPC)
e Quora Question Pairs (QQP)
e Semantic Textual Similarity Benchmark (STS-B)

* Multi-Genre Natural Language Inference (MNLI)
.-x GLU E e Question-answering NLI (QNLI)

e Recognizing Textual Entailment (RTE)
e Winograd NLI (WNLI)




Source of image: https://arxiv.org/abs/1905.00537

Pre-training for NLP

e GLUE scores
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Pre-training for Speech

Pre-train PASEL

fedfisofjeff ——

Unlabeled
speech data

APC NPC

Tera

DeCoAR Wav2vec

HuUBERT

WavLM

“speech version”
of BERT

Just name a few ...




Pre-training for Speech

Pre-train

fedfisofjeff ——

Unlabeled
speech data

Fine-tune

“speech version’
of BERT

)

)

“how are you’

- &8

Speaker 42

Speech
Recognition

Speaker
Recognition



Speech processing Universal PERformance
Benchmark (SUPERB)

https://superbbenchmark.org/
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https://superbbenchmark.org/

SUPERB: Speech processing Universal PERformance Benchmark

Shu-wen Yang", Po-Han Chi**, Yung-Sung Chuang"*, Cheng-I Jeff Lai**, Kushal Lakhotia™*,
Yist Y. Lin'*, Andy T. Liu"*, Jiatong Shi**, Xuankai Chang®, Guan-Ting Lin®,
Tzu-Hsien Huang', Wei-Cheng Tseng", Ko-tik Lee', Da-Rong Liu', Zili Huang*, Shuyan Dong™,
Shang-Wen Li°", Shinji Watanabe®, Abdelrahman Mohamed®, Hung-yi Lee'

Presented at INTERSPEECH 2021
https://arxiv.org/abs/2105.01051

SUPERB-SG: Enhanced Speech processing Universal PERformance
Benchmark for Semantic and Generative Capabilities

Hsiang-Sheng Tsai'*, Heng-Jui Chang'*, Wen-Chin Huang?*, Zili Huang’*, Kushal Lakhotia**,
Shu-wen Yang', Shuyan Dong”, Andy T. Liu', Cheng-I Lai°,
Jiatong Shi’, Xuankai Chang’, Phil Hall®, Hsuan-Jui Chen’,
Shang-Wen Li’, Shinji Watanabe’, Abdelrahman Mohamed’, Hung-yi Lee’

Presented at ACL 2022
https://arxiv.org/abs/2203.06849

https://youtu.be/G

TjwYzFG54E



https://youtu.be/GTjwYzFG54E

Self-Supervised Speech Representation Learning:
A Review

Abdelrahman Mohamed*, Hung-y1 Lee*, Lasse Borgholt*, Jakob D. Havtorn*, Joakim Edin, Christian Igel
Katrin Kirchhoff, Shang-Wen Li, Karen Livescu, Lars Maalge, Tara N. Sainath, Shinji Watanabe

https://arxiv.org/abs/2205.10643
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17:10-17:40 Part 2 Why do PLMs work [Hung-yi]



2022 AACL-UCNLP

Part 2:
Why do PLMs work

Hung-yi Lee

National Taiwan University




Contextualized Word Representations

Embedding

*
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The tokens with similar meaning
have similar embedding.

orange
Eat an apple °
@)
© bird
O fish
O
machine

apple computer
@)

Context is considered.



“Lie” clusters o, ¥ ¥ ¢« Untruth-ved
= o - Take for example the declaration "I will lle for personal benefit."
2 : - Rob reveals to Tracy that everything was a lle and that he still hated her
™ L
= . . ®
. i ;. .
Mathematical sense - verb S .
- A skew polygon does not lie in a flat plan, but = . Lie down - verb
zigzags in three (or mor@) dimensions ’ YIS - There Fenrir will lie until Ragnarok.
- As an open string propaggtes through spacetime, B - They lie down to sleep deeply
its endpoints are requirdg to Ije on a D-brane.. .
® L] . . -
al® g
... : : t4 .* ’ B s . ) - i
e e a . . . .t gn Geographical (island) - verb
. . * . . Some 3,579 islands lle adjacent to the peninsula
*e.. . . « Theislands He orl.!he Kerguelen Platéau .;,':.me Indian Ocean
. N - .
.O - ‘ L] ., . e . . ~ : -
. A by ® ® . @
Conceptual placement - verb S Sy
- According to Dewey, conversation, debate ~ ™ -
and dialogue lie at the heart of a democracy S
- The origins of mathematical thought lie in .« e
the concepts of number, magnitude and form
.
-
s . c. : <
Geographical (other) - verb *.,*«s * |
Very small portions lle within the Pueblo County School District 70 o

The ruins of the town lle along the river Ziz in the Tafilalt casis near the town of Rissani

Andy Coenen, Emily Reif, Ann Yuan, Been Kim, Adam Pearce, Fernanda
Viégas, Martin Wattenberg, Visualizing and Measuring the Geometry of BERT,

NeurlPS, 2019



BERTology - What does each layer learn?

[

[ Transformer Block ] Probing

[ Transformer Block pos |_, Noun?
Classifier ~ Verb?

1 ] /

BERT <
T T \{ NER Place?
[ Transformer BIock C'ass'f'er Name?

I

\ how are you today




BERTology - What does each layer learn?

* Higher classifier accuracy does not always mean encoding
more information.

* Interpret the prob results with care ©
« John Hewitt, Percy Liang, Designing and Interpreting Probes with Control Tasks,
EMNLP, 2019

« Elena Voita, Ivan Titov, Information-Theoretic Probing with Minimum Description
Length, EMNLP, 2020

« John Hewitt, Kawin Ethayarajh, Percy Liang, Christopher Manning, Conditional probing:
measuring usable information beyond a baseline, ENMLP, 2021

 Jiaoda Li, Ryan Cotterell, Mrinmaya Sachan, Probing via Prompting, NAACL, 2022



BERTology - What does each layer learn?

[ [ Transformer Block ]
t t 1 1
[ Transformer Block ]

I 1 1 1 [ Syntactic ]
BERT< : : : : ' -

[ Transformer Block ]
t t { | 2 0
[ Transformer Block ] Surface

I ]

\ how are you today Sentence

Semantic
\_ )




BERTLARGE DSpr.
BERTBASE DSpr.
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Finding Syntax in Word Representations, NAACL, 2019

John Hewitt, Christopher D. Manning, A Structural Probe for



BERTology - What does each layer learn?

Layer] SentLen wC
(Surface) (Surface)

TreeDepth TopConst BShift Tense SubjNum ObjNum SOMO CoordIny
(Syntactic) (Syntactic) (Syntactic) (Semantic) (Semantic) (Semantic) (Semantic) (Semantic)

1 93.9(2.0) 249 (24.8) 35.9 (6.1) 63.6 (9.0) 50.3 (0.3) 82.2(18.4) 77.6 (10.2) 76.7(26.3)  49.9 (-0.1) 53.9(3.9)
2 8300 40.6 (11.3) 71.3(16.1) 55.8 (5.8) 85.9 (23.5) 82.5(15.3) 80.6 (17.1) 53.8(4.4) 58.5 (8.5)
3 96.2 (3.9) 66.5 (66.0) 39.7(10.4) 71.5 (18.5) 64.9 (14.9) 86.6 (23.8) 82.0(14.6) 80.3 (16.6) 55.8(5.9) 59.3(9.3)
- 94.2 (2.3) 69.8 (69.6) 39.4 (10.8) 71.3(18.3) 74.4 (24.5) 87.6 (25.2) 81.9(15.0) 81.4(19.1) 59.0 (8.5) 58.1 (8.1)
5 92.0(0.5) 69.2 (69.0) 89.5 (26.7) 85.8 (19.4) 81.2 (18.6) 60.2 (10.3) 64.1 (14.1)
6 88.4 (-3.0) 63.5(63.4) 41.3 (13.0) 83.3 (36.6) 82.9 (32.9)) /89.8 (27.6) 88.1(21.9) 82.0 (20.1) 60.7 (10.2) 71.1 (21.2)\
7 83.7 (-7.7) 56.9 (56.7) 40.1 (12.0) 84.1 (39.5) 83.0 (32.9) 89.9 (27.5) 87.4 (22.2) 82.2 (21.1) 61.6(11.7) 74.8 (24.9)
8 82.9 (-8.1) 51.1(51.0) 39.2(10.3) 84.0 (39.5) 83.9 (33.9) 89.9 (27.6) 87.5 (22.2) 81.2(19.7) 62.1 (12.2) 76.4 (26.4)
9 80.1 (-11.1) 47.9 (47.8) 38.5(10.8) 83.1(39.8) 87.0 (37.1) 90.0 (28.0) 87.6 (22.9) 81.8 (20.5) 63.4(13.4) 78.7 (28.9)
10 77.0(-14.0) 43.4(43.2) 38.1 (M.Y) S1.7(3Y.8) 30.7(30.7) 89.7 (27.6) 87.1(22.6) 80.5(19.9) 63.3(12.7) 78.4 (28.1)
11 73.9(-17.0) 42.8 (42.7) 36.3(7.9) 80.3 (39.1) 86.8 (36.8) 89.9 (27.8) 85.7 (21.9) 78.9 (18.6) 64.4 (14.5) 77.6 (27.9)

12 69.5(-21.4) 49.1 (49.0) 34.7 (6.9) 76.5 (37.2) 86.4 (36.4) \89.5 (27.7) 84.0 (20.2) 78.7 (18.4) 65.2 (15.3) 74.9 (25.4)/

Ganesh Jawahar, Benoit Sagot, Djameé Seddah, What Does BERT Learn about the Structure of Language?,
ACL, 2019



BERTology - What does each layer learn?

F1 Scores

Expected layer & center-of-gravity

=0 =24 0 2 4 ©6 8 10 12 14 16

POS 88.5
Consts. 73.6
Deps. 856
Entities 90.6
SRL 81.3
Coref. 80.5
SPR 77.7
Relations 60.7

96.7
87.0
95.5
96.1
914
91.9
83.7
84.2

FETTE TS IR T ETE TS EETEE T R S

539

lan Tenney, Dipanjan Das, Ellie Pavlick, BERT Rediscovers the Classical NLP Pipeline, ACL,

2019
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Jingcheng Niu, Wenjie Lu, Gerald Penn, Does BERT Rediscover a Classical NLP Pipeline?, COLING, 2022

Wietse de Vries, Andreas van Cranenburgh, Malvina Nissim, What’s so special about BERT’s layers? A

closer look at the NLP pipeline in monolingual and multilingual models, EMNLP Finding, 2020
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* Cheng-Han Chiang, Sung-Feng Huang, Hung-yi Lee, Pretrained
B E RT E m b ryo | Ogy Language Model Embryology: The Birth of ALBERT, EMNLP,

2020
) * Leo Z. Liuy, Yizhong Wang, Jungo Kasai, Hannaneh
Analyzmg what BERT Hajishirzi, Noah A. Smith, Probing Across Time: What Does
|earned during training RoBERTa Know and When? EMNLP-finding, 2021

e

When does BERT know POS tagging, syntactic parsing, semantics?




When Do You Need Billions of Words of Pretraining Data?

s - 1.0 1 Classifier Probing
1.0 o fom PYPBCHC @ (Edge Probing)
—_ Learning Curve (W)
-QOJ Semantic C 0.8 —— MDL Reflected
N 084 —  Aaring CiAde g (Edge Probing)
— i —-= BLiMP
© Winograd — 4
= 061 — Learning Curve .,g 0.6 - LAMA .
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e TR Semantic Results i 7
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Pretraining Dataset Size

Yian Zhang, Alex Warstadt, Xiaocheng Li, Samuel R. Bowman, When Do You Need Billions of Words of
Pretraining Data? ACL 2021



daq
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103
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103

Pre-trained Intrinsic Dimension

* Smaller intrinsic dimension means better generalization

RoBERTa Pre-Training Intrinsic Dimension Trajectory

Dataset 3 -y
—e— MRPC e \\\\\“\\\\\

QQP . ¥ s
= Yelp " \\\\\\
#- SST-2 s \

—+-- MNLI
-+ ANLI (R1+R2+R3)

40000 60000 80000 100000 120000 140000 160000 180000 200000
Updates

Armen Aghajanyan, Sonal Gupta, Luke Zettlemoyer, Intrinsic Dimensionality Explains the Effectiveness of Language
Model Fine-Tuning, ACL, 2021



Cross-discipline Capability

Pre-train Fine-tune Testing

\ ' DNA
A Classification
i T N Protein

Classification
Human Language

Wei-Tsung Kao, Hung-yi Lee, Is BERT a Cross-Disciplinary Knowledge
Learner? A Surprising Finding of Pre-trained Models’ Transferability,
EMNLP finding, 2021



Cross-discipline Capability

Downstream task

El
El
|E
|E
|E
|E
|E
N
N
N

class

CCAGCTGCATCACAGGAGGCCAGCGAGCAGGTCTGTTCCAAGC
AGACCCGCCGGGAGGCGGAGGACCTGCAGGGTGAGCCCCALLC
AACGTGGCCTCCTTGTGCCCTTCCCCACAGTGCCCTCTTCCAGG
CCACTCAGCCAGGCCCTTCTTCTCCTCCAGGTCCCCCACGGCCC
CCTGATCTGGGTCTCCCCTCCCACCCTCAGGGAGCCAGGCTCAC
AGCCCTCAACCCTTCTGTCTCACCCTCCAGCCTAAAGCTCCTTGA
CCACTCAGCCAGGCCCTTCTTCTCCTCCAGGTCCCCCACGGCCC
CTGTGTTCACCACATCAAGCGCCGGGACATCGTGCTCAAGTGGC
GTGTTACCGAGGGCATTTCTAACAGTCTTCTTACTACGGCCTCCC
TCTGAGCTCTGCATTTGTCTATTCTCCAGCTGACCCTGGTTCTCIC

DNA sequence



Cross-discipline Capability

class

|

[ Linear }' = Random initialization
T pre-train on English
L Init by pre-train

A

A we
T you
C he
[CLS] we she we he
G | she A 4 4 a4

DNA sequence =========- > A G A



Cross-discipline Capability

* Applying BERT to protein, DNA, music classification

Protein DNA Music

localization stability fluorescence H3  H4 H3K9ac Splice composer

specific 69.0 76.0 63.0 87.3 87.3 19.1 94.1 -
(BERT 64.8 743 63.7 83.0 862 783 O7.5 0.2
re-emb 63. 75.4 373 T8y 8300 76.3 95.6 9.2
rand 38.6 65.8 27.5 75.6_ 66.5 72.8 95 36

The pretrained models learn some general skills for the classification.



Cross-discipline Capability

PLUS-TF Hilbert-CNN

871
801

601

401

201

[ scratch

DNA Classification Protein Classification Music Classification
(average 3 tasks) (average 4 tasks)



loss

How pre-trained model improve the performance?

Optimization

- pre-trained
scratch

0K 2K 4K 6K 8K 10K12K14K
steps

(b) fluorescence

Generalization
1.0 e 1.0
0.71] —— pre-trained “|1| —— pre-trained
0.6 scratch 0.8 scratch 0.8
i I | P e e R R Y 0 a—
2 063 ¥ 0.6 3
=~ 0.4 @ = s
= > .5 1.0 >
© 0.3 04y O 0.4 5
- o I [ B e Sy I L s by s etk fue Gt 3|
0.2 =4
| 0.2 0 0.2
0.11 {1 |
j!‘! L, |
0.0+ 44_L — 0.0 0.0+ o —t (.0
0 5000 10000 15000 0 2000 4000 6000
step step
(a) H3KO9ac (b) localization

The pretrained models help both optimization and generalization.




To learn more ...

Kevin Lu, Aditya Grover, Pieter Abbeel, Igor Mordatch, Pretrained
Transformers as Universal Computation Engines, arXiv, 2021

Positional L frozen self-attention blocks
| Embeddings

.
X
—

[ Input i 5 Multi-Head Add & Feed Add & Output
| Embedding | Attention Layer Norm Forward Layer Norm Layer

Performance on Multimodal Sequence Benchmarks
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- Frozen Pretrained Transformer - Full Transformer Full LSTM



Cheng-Han Chiang, Hung-yi Lee, On the Transferability of Pre-trained
Léarrﬁage Models: A Study from Artificial Datasets, AAAI, 2022

Pre-training on Artificial D

We have seen the cross-discipline capability of self-supervised model ......

Pre-train Fine-tune Testing

%% *IGLUE

We can pre-train model on A set of NLP Tasks
data other than text.




Cheng-Han Chiang, Hung-yi Lee, On the Transferability of Pre-trained
Laar%age Models: A Study from Artificial Datasets, AAAI, 2022

Pre-training on Artificial D

We have seen the cross-discipline capability of self-supervised model ......

Pre-train Fine-tune Testing

*I1GLUE

Token generation by rules A set of NLP Tasks

By generating artificial data with different rules, we can know
what are the key factors for the success of pre-training.



NLP Downstream Task:

Pre-train
0o0s/neg Sentiment Analysis
Linear
Token generation by rules T Fme:une
ID text T .
1 the BERT pre-training on token IDs
2 a (take token IDs as input)
3 s 1 1 1 1 1
4 good [CLS] 1 101 3 (4)
A 4 a4 4
101 | movie the movie is good




Pre-training on Artificial Data

Absolute improvement (%) compared

to training from scratch

\ Average performance

25
g Upper bound ' on GLUE tasks

20

15

[ ] English] random
M paired W shuffle




Pre-training on Artificial Data

Absolute improvement (%) compared
to training from scratch

A

7~ 25

20
15

10

¥

MW English [ random]
paired shuffle

Pre-training on random tokens
yields the same performance as
training from scratch.

Data plays the role.




Pre-training on Artificial Data

Absolute improvement (%) compared
to training from scratch

A

7~ 25

20
15

10

$

M English @ random
[ paired] shuffle

Also refer to:

Isabel Papadimitriou, Dan Jurafsky,
Learning Music Helps You Read: Using
Transfer to Study Linguistic Structure
in Language Models, EMNLP, 2020

All the tokens in the generated
seguences are paired.

Structured data is critical for
learning useful skills for NLP,

Is it true?



Pre-training on Artificial Data

Absolute improvement (%) compared
to training from scratch

A

7~ 25

20
15

10

M English @ random
paired [ shuffle ]

e Shuffle

To predict this token, model needs to go
through the whole sequence.

Is long-range reading the key to the
success of a pretrained model?



Absolute improvement (%) compared
to training from scratch [ 1 4 I 3

14

2 vlr
10 CE 1I4

8
N

. Y
Longer consecutive tokens, better

4 performance in NLP tasks

2 [} ]
Learning to read a long-range in

’ a sequence is crucial.

- 6 B8 W16 m32 m64

J
Y Are there more factors?

Length of consecutive tokens Need more investigation ©




To learn more ......

AACL-IJCNLP 2022 will be held online
from November 20-23 , 2022 .

¥

will 2022 , be November . online 2022
from held 20-23 AACL-IJCNLP

Koustuv Sinha, Robin Jia, Dieuwke Hupkes, Joelle
Pineau, Adina Williams, Douwe Kiela, Masked
Language Modeling and the Distributional
Hypothesis: Order Word Matters Pre-training for
Little, EMNLP, 2021
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To learn more ......

* What knowledge in pretrained
encoders are transferred across
different languages?

“tokens in a sequence can be
characterized by its neighbor tokens
at specific positions”

Ryokan Ri, Yoshimasa Tsuruoka, Pretraining with
Artificial Language: Studying Transferable Knowledge
in Language Models, ACL, 2022

Artificial Pretraining
(<§3) (<14l47) (14i=7>) (25») Gg) @f)

Transfer
the encoder

Fine-tuning

L2 Embeddings




Concluding Remarks of Part 2

* Why do PLMs work?

, Don't know the answer yet.
* Contextualized word representations

* BERTology: Analyzing what is learned by BERT
* BERT Embryology: Analyzing what BERT learned during training

* Cross-discipline Capability
* Pre-training on Artificial Data



Schedule

17:40—-18:20 Part 3 How to use PLMs: Contrastive Learning for PLMs [Yung-Sung]
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Part 3:
How to use PLMs:
Contrastive Learning for PLMs

Yung-Sung Chuang
CSAIL, MIT




Contrastive Learning

Computer Vision:
CPC, SimCLR, MoCo, SWAV

Speech Processing:
CPC, wav2vec,wav2vec2.0

NLP (?)



Why Contrastive?

We want to obtain a good representation space such that

1. Similar inputs have similar representations. -> Positive Pairs

Images sampled
from the same class

Chen, Ting, et al. "A simple framework for contrastive learning of visual representations." International conference on
machine learning. PMLR, 2020.

Khosla, Prannay, et al. "Supervised contrastive learning." Advances in Neural Information Processing Systems 33 (2020):
18661-18673.



Why Contrastive?

We want to obtain a good representation space such that

2. Dissimilar inputs have dissimilar representations. -> Negative Pairs

Randomly sampled images

Chen, Ting, et al. "A simple framework for contrastive learning of visual representations." International conference on
machine learning. PMLR, 2020.

Khosla, Prannay, et al. "Supervised contrastive learning." Advances in Neural Information Processing Systems 33 (2020):
18661-18673.



Contrastive Learning

SimCLR for Computer Vision

psim(h, b)) /7

l; = log
¢ N sim hi,hTL T
ijl osim(hihy)/

Chen, Ting, et al. "A simple framework for contrastive learning of visual representations." International conference on
machine learning. PMLR, 2020.



Contrastive Learning for NLP?

* Masked Language Modeling shares some similarity to contrastive
learning

Instance:
weather contextualized representation of [MASK]
Contexutalized H Positive Pairs:
[ BERT } non-contextualized representation of “weather”

SECERE

T T T T T T Negative Pairs:
non-contextualized representation of all the other

i ?
How is  the mask today - words in the vocabulary

Devlin, Jacob, et al. "BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding." Proceedings of
the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers). 2019.



Why Contrastive on NLP?

e MLM can be seen as a contrastive learning task using all negative

pairs for training
o Finite vocabulary size (30k for BERT) prevents negative sampling

Issues
-> MLM can be trained as a simple token-level classification task

o Are there any task has infinite possible inputs?

-» Sentence-level task!
-» We have infinite possible sentences; not possible to enumerate all

the sentences in the world.
-» Good to apply contrastive learning for sentence-level
representations.
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General-Purpose Sentence Representations

e Provide as a backbone that can be useful on a variety of
downstream sentence-level tasks

e Good generalization ability on tasks without much training data
e.g. even linear probing can achieve good performance

o Efficient sentence-level clustering or semantic search by inner
products

o Measure similarities among sentence pairs

e Unsupervised methods are more desirable in order to be applied to
languages beyond English

We will mainly focus on unsupervised methods through this tutorial!



Before BERT came out...

* Skip-Thought Vectors, NIPS 2016 -> Next Sentence Prdiction

| got back home <eos>
C | got back home
I was strange <eos>
<eos> This was strange

Figure 1: The skip-thoughts model. Given a tuple (s;—1, S;, S;+-1) of contiguous sentences, with s;
the 2-th sentence of a book, the sentence s; is encoded and tries to reconstruct the previous sentence
s;—1 and next sentence s;, 1. In this example, the input is the sentence triplet I got back home. 1
could see the cat on the steps. This was strange. Unattached arrows are connected to the encoder
output. Colors indicate which components share parameters. (eos) is the end of sentence token.

Kiros, Ryan, et al. "Skip-thought vectors." Advances in neural information processing systems 28 (2015).


https://papers.nips.cc/paper/2015/hash/f442d33fa06832082290ad8544a8da27-Abstract.html

Before BERT came out...

* Quick-Thought vectors, ICLR 2018 -> Next Sentence Prdiction w/o
Decoder

Spring had come. —»_—» aan l And yet his crops didn’t grow.

(a) Conventional approach

Spring had come. —»_—» (e00e)——

e
And yet his crops didn’t grow. —»_—» @_%
He had blue eyes. —»_—» @_3’»

(b) Proposed approach

They were so black.

Classifier
|
[\®]

Logeswaran, Lajanugen, and Honglak Lee. "An efficient framework for learning sentence representations." International
Conference on Learning Representations. 2018.





https://leemeng.tw/attack_on_bert_transfer_learning_in_nlp.html

How to obtain sentence representations from BERT?

e It cannot be trivially obtained from token-level representations
o Average pooling performs even worse than avg. GloVe embeddings

Dataset STS-B SICK-R  STS-12  STS-13  STS-14  STS-15  STS-16

Published in (Reimers and Gurevych, 2019)
Avg. GloVe embeddings 58.02 53.76 55.14 70.66 59.73 68.25 63.66
Avg. BERT embeddings 46.35 58.40 38.78 57.98 57.98 63.15 61.06
BERT CLS-vector 16.50 42.63 20.16 30.01 20.09 36.88 38.03

Li, Bohan, et al. "On the Sentence Embeddings from Pre-trained Language Models." Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Processing (EMNLP). 2020.



Anisotropy problem in BERT's representation space

o Representation degeneration:

- the learned embeddings occupy a narrow
0.5 cone in the vector space
oo o Limits the expressiveness of the vector
space.
-0.5
-1.0

20 =15 =140 =025 00
X

Gao, Jun, et al. "Representation Degeneration Problem in Training Natural Language Generation Models." International Conference on Learning Representations. 2018.
Ethayarajh, Kawin. "How Contextual are Contextualized Word Representations? Comparing the Geometry of BERT, ELMo, and GPT-2 Embeddings." Proceedings of the 2019
Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP). 2019.

Wang, Lingxiao, et al. "Improving neural language generation with spectrum control." International Conference on Learning Representations. 2019.



BERT-flow

U Z
n Invertible mapping i 2
[ ] |
non-smooth . .
anisotropic " “1 e
semantic space :
The BERT sentence Standard Gaussian
embedding space latent space (isotropic)

Li, Bohan, et al. "On the Sentence Embeddings from Pre-trained Language Models." Proceedings of the 2020
Conference on Empirical Methods in Natural Language Processing (EMNLP). 2020.

smooth
isotropic
semantic space



BERT-flow

* Sentence Textual Similarity (STS) Task
Data: Sentence pairs with 1-5 human ratings for the similarity
Metric: Spearman Correlation between model predictions and human

ratings

Dataset STS-B SICK-R  STS-12  STS-13  STS-14  STS-15  STS-16
Published in (Reimers and Gurevych, 2019)
Avg. GloVe embeddings 58.02 53.76 55.14 70.66 59.73 68.25 63.66
Avg. BERT embeddings 46.35 58.40 38.78 57.98 57.98 63.15 61.06
BERT CLS-vector 16.50 42.63 20.16 30.01 20.09 36.88 38.03
Our Implementation

BERTh;se 47.29 58.21 49.07 55.92 54.75 62.75 65.19
BERT}5.-1ast2avg 59.04 63.75 57.84 61.95 62.48 70.95 69.81
BERTh,se-flow (NLI*) 5856 (]) 6544 (1) 59.54(1) 64.69(1) 64.66(1) 72.92(1) 71.84())
BERT},s.-flow (target) 70.72 (1) 63.11(1) 63.48 (1) 72.14(1) 68.42 (1) 73.77(1) 75.37())

Li, Bohan, et al. "On the Sentence Embeddings from Pre-trained Language Models." Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Processing (EMNLP). 2020.



BERT-whitening

e Using a simple whitening post-processing can outperform BERT-flow

STS-B STS-12  STS-13  STS-14  STS-15  STS-16 SICK-R
Published in (Reimers and Gurevych, 2019)

Avg. GloVe embeddings 58.02 55.14 70.66 59.73 68.25 63.66 53.76
Avg. BERT embeddings 46.35 38.78 57.98 57.98 63.15 61.06 58.40
BERT CLS-vector 16.50 20.16 30.01 20.09 36.88 38.03 42.63
Published in (Li et al., 2020)
BERTyse-first-last-avg 59.04 57.84 61.95 62.48 70.95 69.81 63.75
BERT}5.-flow (NLI) 58.56 59.54 64.69 64.66 72.92 71.84 65.44
BERT}45.-flow (target) 70.72 63.48 72.14 68.42 73.77 75.37 63.11
Our implementation
BERT s -first-last-avg 59.04 57.86 61.97 62.49 70.96 69.76 63.75
BERT}a5e-whitening (NLI) 68.19(7) 61.69(1) 65.70() 66.02() 7511(C) 73.11() 63.6(])
BERT }a5.-Whitening-256 (NLI) 67.51() 61.46() 66.71() 66.17() 74.82() 72.10() 64.9())
BERT }.5-Whitening (target) 71.34(7) 63.62(7) 73.02(7) 69.23() 74.52() 72.15()) 60.6(])

BERT}ase-Whitening-256 (target) 71.43(7) 63.89(1) 73.76(") 69.08(1) 74.59(") 7440(]) 62.2())

Su, lJianlin, et al. "Whitening sentence representations for better semantics and faster retrieval." arXiv preprint
arXiv:2103.15316 (2021).



We need further fine-tuning
to extract better sentence embeddings
from pre-trained language models...
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Contrastive Learning

How can we produce
augmentations in NLP?

S




Outline of Part 3

1. Why we need sentence-level representations?
2. Pre-BERT methods

3. How to obtain sentence-level representations from BERTs?
a. Post-processing Methods

4. Contrastive Learning Methods:
Designed Positives

Generating Positives
Bootstrapping Methods
Dropout Augmentations
Equivariant Contrastive Learning
Prompting

Ranking-based Methods

5. Conclu5|on

® ™~ ® 2 o T W



DeCLUTR

* Positive Pairs:
Overlapping/adjacent spans from the
same document

* Negative Pairs:
* hard negatives from the same docs
* easy negatives from different docs

A.
,_>Q_>m_. PoOLER
Sample anchor(s)
\ ’ \ ’
\ ’ \ ¢
\ " \ , - - . -
Share weights A Minimize distance
7 N 7 N\
’ \ ’ \
Sample positive(s) ‘ N ‘ N
ENCODER POOLER o

B. C.

I y I Anchor

Overlapping view Adjacent view

itive Anchor

Span length

Subsumed view

Giorgi, John, et al. "DeCLUTR: Deep Contrastive Learning for Unsupervised Textual Representations." Proceedings of the
59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on

Natural Language Processing (Volume 1: Long Papers). 2021.



Results (STS)

* Good improvement over post-processing methods

Model SICK-E SICK-R STS-B COCO STS12* STS13* STS14* STS15% STS16*
GloVe 78.89 72.30 62.86 0.40 53.44 51.24 55.71 59.62 57.93
fastText 79.01 72.98 68.26 0.40 58.85 58.83 63.42 69.05 68.24
InferSent 86.30 83.06 78.48 65.84 62.90 56.08 66.36 74.01 72.89
USE 85.37 81.53 81.50 62.42 68.87 71.70 72.76 83.88 82.78
Sent. Transformers 82.97 79.17 74.28 60.96 64.10 65.63 69.80 74.71 72.85
QuickThoughts - - - 60.55 - - - - -
Transformer-small  81.96 77.51 70.31 60.48 53.99 45.53 57.23 65.57 63.51
Transformer-base 80.29 76.84 69.62 60.14 53.28 46.10 56.17 64.69 62.79
DeCLUTR-small 834671 77.6671 77517 60857 63.661 68937 70.40 78.25 1 77.74
DeCLUTR-base 83.841 78621 79391 623517 63561 72581 71701 79.951 79.59
BERT-flow -- 63.11 70.72 -- 63.48 72.02 68.42 73.77 75.37
BERT-whitening -- 62.20 71.43 -- 63.89 73.76 69.08 74.59 74.40

Giorgi, John, et al. "DeCLUTR: Deep Contrastive Learning for Unsupervised Textual Representations." Proceedings of the
59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on
Natural Language Processing (Volume 1: Long Papers). 2021.



ConSERT

 All the possible augmentations on token embedding space

Adversarial Perturbations (-Shuﬂled Position Ids

Position Lxd (©) (@)
Ids Embedding Matrix @ ®
® ® D> )
@ @
® T ® (€)

® L A) Adversarial Attack B) Token Shuffling

Token Cutoff Feature Cutoff
} Rk 8 )
®| ] ® ® ®
. d g @ @ @
® ® @
[ unchanged elements [ perturbed elements [ zero-out elements

Yan, Yuanmeng, et al. "ConSERT: A Contrastive Framework for Self-Supervised Sentence Representation
Transfer." Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th
International Joint Conference on Natural Language Processing (Volume 1: Long Papers). 2021.



Experiments

* Using unlabeled text to train contrastive loss for adaptation

Method STS12 STS13 STS14 STS1S STS16 STSb SICK-R  Avg.

Unsupervised baselines
Avg. GloVe embeddings’  55.14  70.66 59.73 6825 63.66 5802 53.76 61.32

BERT 0 * 3520 59.53 4937 6339 6273 48.18 58.60 53.86
BERTlargei 33.06 57.64 4795 5583 6242 49.66 53.87 5149
CLEARpgsc! 49.0 48.9 57.4 63.6 65.6 75.6 72.5 61.8
IS-BERT}s-NLIT 56.77 6924 6121 7523 70.16 69.21 64.25 66.58
BERTps-CTT 66.86 7091 7237 7855 71.78 - - -

BERTlarge-CTT 69.50 7597 7422 7883  78.92 - - -

Using STS unlabeled texts

BERT}c-flow! 63.48 72.14 6842 73777 7537 70.72  63.11  69.57
BERTlarge-ﬂowT 65.20 7339 6942 7492 77.63 7226 6250 70.76
ConSERT et 64.64 7849 69.07 79.72 7595 7397 6731 7274
ConSERTlargei 70.69 8296 74.13 82.78 76.66 7753 7037 76.45

DeCLUTR (BERT-base) 63.56 72.58 71.70 79.95 79.59 79.39 78.62 75.06

Yan, Yuanmeng, et al. "ConSERT: A Contrastive Framework for Self-Supervised Sentence Representation
Transfer." Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th
International Joint Conference on Natural Language Processing (Volume 1: Long Papers). 2021.



Effects of Augmentation Strategies

Token Feature
None  Shuffle Cutoff  Cutoff Dropout

None- 63.84 71.11 67.86 67.77
Shuffle - SPAG) 71.62

[

o

uole|a.110d uewJieads abelany

Token_
Cutoff 2l - 68
Feat 67
eature _
Cutoff 67.86 66.76 66.65
- 66
- 65
Dropout - 67.77 72.71 66.67 66.52
|64

Yan, Yuanmeng, et al. "ConSERT: A Contrastive Framework for Self-Supervised Sentence Representation
Transfer." Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th
International Joint Conference on Natural Language Processing (Volume 1: Long Papers). 2021.
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Datasets from Instructions (DINO \h)
* Continuations generated by GPT-2 XL

Task: Write two sentences that mean the same thing.
Sentence 1: “A man is playing a flute.”
Sentence 2: “He’s playing a flute.”

Task: Write two sentences that are somewhat similar.
Sentence 1: “A man is playing a flute.”

Sentence 2: “A woman has been playing the violin.”

Task: Write two sentences that are on completely
different topics.

Sentence 1: “A man is playing a flute.”

Sentence 2: “A woman is walking down the street.”

Schick, Timo, and Hinrich Schiitze. "Generating Datasets with Pretrained Language Models." Proceedings of the 2021
Conference on Empirical Methods in Natural Language Processing. 2021.



Datasets from Instructions (DINO LN

Model UD STS12 STS13 STS14 STS15  STS16 STSb SICK Avg.
InferSent, Glove — 52.86 66.75 62.15 72.77 66.87 68.03 65.65 65.01
a. USE - 64.49 67.80 64.61 76.83 73.18 74.92 76.69 71.22
7  S-BERT (base) - 70.97 76.53 73.19 79.09 74.30 77.03 72.91 74.89
S-RoBERTa (base) - 71.54 72.49 70.80 78.74 73.69 71.37 74.46 74.21
Avg. GloVe - 55.14 70.66 59.73 68.25 63.66 58.02 53.76 61.32
Avg. BERT — 38.78 57.98 57.98 63.15 61.06 46.35 58.40 54.81
. BERTCLS - 20.16 30.01 20.09 36.88 38.08 16.50 42.63 29.19
£ Zhang et al. (2020) NLI 56.77 69.24 61.21 75.23 70.16 69.21 64.25 66.58
§ Li ﬁé}‘ﬁ%’ NLI 59.54 64.69 64.66 72.92 71.84 58.56 65.44 65.38
Lietal. (2 STS 63.48 72.14 68.42 73.77 75.37 70.72 63.11 69.57
DINO (STS-=-x1x2) - 64.87 78.30 66.38 79.60 76.47 76.51 74.26 73.77
DINO (STS-m-x2) STS 70.27 81.26 71.25 80.49 77.18 77.82 68.09 75.20
DeCLUTR (BERT-base) 63.56 72.58 71.70 79.95 79.59 79.39 78.62 75.06
ConSERT (BERT-base) 64.64 78.49 69.07 79.72 75.95 73.97 67.31 72.74

Schick, Timo, and Hinrich Schiitze. "Generating Datasets with Pretrained Language Models." Proceedings of the 2021
Conference on Empirical Methods in Natural Language Processing. 2021.
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BYOL

o Not contrastive learning
e Only positive pairs, no
negatives pairs

Online network

« Use a moving average g Rl
z B & (815390 =7)
target network to prevent “EFF
mode collapsing B Al (00 z0). )
e TaoColl, - T=2T
\4 j Y M
= B _ Iz /

Target network

Grill, Jean-Bastien, et al. "Bootstrap your own latent-a new approach to self-supervised learning." Advances in neural
information processing systems 33 (2020): 21271-21284.



BYOL for sentence representations

* Back-Translation as positive pairs

Model STS-12 STS-13 STS-14 STS-15 STS-16 STS-B SICK-R  Avg.
Unsupervised methods
Unigram-TFIDFT - - 58.00 - - - 52.00 -
SDAE - - 12.00 - - - 46.00 -
SkipThought! - - 27.00 - - - 57.00 -
FastSent! - = 63.00 - . - 61.00 -
GloVe avg.t 55.14 7066  59.73 6825 63.66 5802 5376 6132
BERT avg.} 3878 5798 5798  63.15 61.06 4635 5840 5481
BERT [CLS] 20.16  30.01 20.09 3688 38.08 1650  42.63 29.19
BERT-mlm 4886 6476 5697 7086 64.65 6433 6176  62.60
IS-BERT* 56.77 6924 6121 7523  70.16 6921 6425  66.58
BERT-flow® 59.54 6469 6466 7292 71.84 5856 6544 6538
Ours: BSL-BERT 6783 7140 6688 7997 7397 7374 7040 72.03

Ours: BSL-RoBERTa 68.47 72.41 68.48 78.50 72.77  78.77 69.97 72.76

DeCLUTR (BERT-base) 63.56 72.58 71.70 79.95 79.59 79.39 78.62 75.06
ConSERT (BERT-base) 64.64 78.49 69.07 79.72 75.95 7397 67.31 7274
DINO (RoBERTa-base) 70.27 81.26 71.25 80.49 77.18 77.82 68.09 75.20

Zhang, Yan, et al. "Bootstrapped unsupervised sentence representation learning." Proceedings of the 59th Annual

Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural
Language Processing (Volume 1: Long Papers). 2021.
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SImCSE (Unsupervised)

* Using different dropout masks (in Transformer layers) as augmentation
-> Model architecture is the same

Different hidden dropout mask
in two forward passes

)
[ Two dogs are running. }> —~QOX—

N

_ 0

A man surfing on the sea. | E 22 ,'

/

A kid is on a skateboard. *(\j‘}';‘,’/

—

. — DPositive instance

. —= Negative instance

Gao, Tianyu, Xingcheng Yao, and Dangi Chen. "SimCSE: Simple Contrastive Learning of Sentence
Embeddings." Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing. 2021.



Results (STS)

Model STS12 STS13 STS14 STS15S STS16 STS-B  SICK-R  Avg.
Unsupervised models

GloVe embeddings (avg.)® 55.14 70.66 59.73 68.25 63.66 58.02 53.76 61.32
BERTyas. (first-last avg.) 39.70 59.38 49.67 66.03 66.19 53.87 62.06 56.70
BERT}y,s.-flow 58.40 67.10 60.85 75.16 71.22 68.66 64.47 66.55
BERT},s.-whitening 57.83 66.90 60.90 75.08 71.31 68.24 63.73 66.28
IS-BERT,.cc ¥ 56.77 69.24 61.21 13:23 70.16 69.21 64.25 66.58
CT-BERT} .5 61.63 76.80 68.47 77.50 76.48 74.31 69.19 72.05
*x SINCSE-BERT} 55 68.40 82.41 74.38 80.91 78.56 76.85 72.23 76.25
RoBERTay, s (first-last avg.)  40.88 58.74 49.07 65.63 61.48 58.55 61.63 56.57
RoBERTay s.-whitening 46.99 63.24 57.23 71.36 68.99 61.36 62.91 61.73
DeCLUTR-RoBERTay ;s 52.41 75.19 65.52 77.12 78.63 72.41 68.62 69.99
x SINCSE-RoBERTay ;5 70.16 81.77 73.24 81.36 80.65 80.22 68.56 76.57
* SIMCSE-ROBERTa; 41 ge 72.86 83.99 75.62 84.77 81.80 81.98 71.26 78.90
DeCLUTR (BERT-base) 63.56 72.58 71.70 79.95 7959 79.39 78.62 75.06
ConSERT (BERT-base) 64.64 78.49 69.07 79.72 7595 7397 67.31 72.74
DINO (RoBERTa-base) 70.27 81.26 71.25 8049 7718 77.82 68.09 75.20

Gao, Tianyu, Xingcheng Yao, and Dangi Chen.

"SimCSE: Simple Contrastive Learning of Sentence
Embeddings." Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing. 2021.



Why Dropout?

o Better than crop, word deletion and replacement

o Simple but super effective

Data augmentation STS-B
None (unsup. SimCSE) 82.5
Crop 10% 20%  30%
77.8 714 63.6
Word deletion 10% 20%  30%
759 722 68.2
Delete one word 75.9
w/o dropout 74.2
Synonym replacement 77.4
MLM 15% 62.2

Gao, Tianyu, Xingcheng Yao, and Dangi Chen. "SimCSE: Simple Contrastive Learning of Sentence

Embeddings." Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing. 2021.




Why Self-Prediction?

STS-B results share encoder dual encoder
Training objective fo  (foy, fos)
QuickThoughts Next sentence 66.8 67.7
(pos: Next Sentence) Next 3 sentences 68.7 69.7
Self-Prediction Delete one word 74.8 70.4
(pos: Same Sentence) Unsupervised SImCSE ~ 79.1 70.7

Gao, Tianyu, Xingcheng Yao, and Dangi Chen. "SimCSE: Simple Contrastive Learning of Sentence
Embeddings." Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing. 2021.



How to Dropout?

P 0.0 001 0.05 0.1
STS-B 649 69.5 78.0 79.1
P 0.15 0.2 0.5 | FixedO.l

STS-B  78.6 782 674 45.2

o Fixed 0.1: apply the same dropout mask for two inputs
-> |leading to mode collapsing

o Best: Two different dropout masks with p =0.1

Gao, Tianyu, Xingcheng Yao, and Dangi Chen. "SimCSE: Simple Contrastive Learning of Sentence
Embeddings." Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing. 2021.



Supervised SImCSE

(b) Supervised SimCSE

f N\ / \ 4
Two dogs < There are animals outdoors. l
are runnin \\\\\\ \———label=entailment
8 \\\\\\ p;
N\ @O [+ The pets are sitting on a couch. I
I \‘ |\ ~—label=contradiction
! W\
_Dl\’\\’\\ | \ ‘/\"\\"\\q_
V2= \\ A
E ‘ \\ E label=
1L
RIEiehy
|\ label=contr
1\
~2Q \ QD+
\\ label=
MO D) —
— o ~— label=

Gao, Tianyu, Xingcheng Yao, and Dangi Chen. "SimCSE: Simple Contrastive Learning of Sentence
Embeddings." Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing. 2021.



Supervised SImCSE

back-translation paraphrase

use contradict as negative examples

Gao, Tianyu, Xingcheng Yao, and Dangi Chen. "SimCSE:
Embeddings." Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing. 2021.

Dataset sample  full
Unsup. SimCSE (1m) - 82.5
QQP (134k) 81.8 81.8
Flickr30k (318k) 81.5 81.4
ParaNMT (5m) 79.7 78.7
SNLI+MNLI

entailment (314k) 84.1 84.9

neutral (314k)® 82.6 829

contradiction (314k) 77.5 77.6

all (942k) 81.7 81.9
SNLI+MNLI

entailment + hard neg. - 86.2

+ ANLI (52k) - 85.0

Simple Contrastive Learning of Sentence




Supervised SImCSE

Unsupervised SImMCSE v.s Supervised SimCSE

Supervised model is still performs much better
-> Large space for unsupervised models to improve

Model STS12 STS13 STS14 STS1S STS16 STS-B  SICK-R  Avg.
Unsupervised models
* SIMCSE-BERT} 56 68.40 82.41 74.38 80.91 78.56 76.85 72.23 76.25
Supervised models
* SIMCSE-BERT, ¢ 75.30 84.67 80.19 85.40 80.82 84.25 80.39 81.57

Gao, Tianyu, Xingcheng Yao, and Dangi Chen. "SimCSE: Simple Contrastive Learning of Sentence
Embeddings." Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing. 2021.



Alignment & Uniformity

laign = B ||f(z) = f(ah)|%.

(x,x-i-)"’ppos

Cuniform = log E e—2||f($)—f(y)||2’

Positive Pair : - w ) ~ Ppos

L y
Alignment: Similar samples have similar features. Uniformity: Preserve maximal information.

Wang, Tongzhou, and Phillip Isola. "Understanding contrastive representation learning through alignment and
uniformity on the hypersphere." International Conference on Machine Learning. PMLR, 2020.



Analysis

* Pre-trained embedding:
good alignment
poor uniformity
=> anisotropic
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BERT-whitening (66.3)
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Analysis

e Pre-trained embedding:
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Analysis

e Pre-trained embedding:
good alignment
poor uniformity
=> anisotropic

o Post-processing methods
(BERT-whitening/flow):
good uniformity
poor alignment

e SIMCSE:
Best of the both worlds

[ 4

BERT-whitening (66.3)

BERT:flow (66.6)
SBERT-whitening (77.0)
SBERT-flow (76.6)

> crrTTIn,

'/(Unsup)SimCSE (74.5))

Next3Sent (64.1)

(SimgsH (81.6) @

7
SBERT (74.9) Avg. BERT (56.7)
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MmSIMCSE

Contrastive learning on only English data with multilingual models
(mBERT, XLM-R) can align all other other languages without any
parallel data.

en and sw-xIm-roberta-large_en_sw.png en and sw-xIm-roberta-large-mix3_en_sw.png
20
en Saboo ¥ . e en
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(a) XLM-R without finetun- (b) XLM-R fintuned on En-
ing. glish NLI data.

Wang, Yau-Shian, Ashley Wu, and Graham Neubig. "English Contrastive Learning Can Learn Universal Cross-lingual
Sentence Embeddings." arXiv preprint arXiv:2211.06127 (2022).



MmSIMCSE

* mSimCSE performs close to Models BUCC Tatocba-14 _Tatocba36
. oy Unsupervised

supervised multilingual sentence XLMR 60 576 534
INFOXLM - 717.8 67.3

encoder such as LaBSE. DuEAM 772 : :
XLM-E - 72.3 62.3
HiCTL 68.4 - 59.7
mStmCSFE., 87.5 82.0 78.0

English NLI supervised
(Phang et al., 2020) 71.9 - 81.2
mSimCS Eey, 93.6 89.9 87.7
Cross-lingual NLI supervised

mSTmCSEen, ¢r 94.2 90.8 88.8
mSimCS Een, fr,sw 94.3 93.3 90.3
mSimCSE, 95.2 93.2 91.4

DuEAM 81.7 - -

Fully Supervised

LASER 92.9 95.3 84.4
LaBSE 93.5 95.3 95.0
mStmCS Es,y, 86.8 87.7 86.3
mSimCSE g, 87.1 87.9 85.9
mSimCSEsw, r 88.8 90.2 88.3
mSimCSFEsy, s»+NLI  93.6 91.9 90.0

Wang, Yau-Shian, Ashley Wu, and Graham Neubig. "English Contrastive Learning Can Learn Universal Cross-lingual
Sentence Embeddings." arXiv preprint arXiv:2211.06127 (2022).
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What we’ve learned from SimCSE?

Augmentations for natural language is hard:

o Word deletion is not a good augmentation

e Synonym replacement is not a good augmentation
e Sentence cropping is not a good augmentation

o Back-translation is not a good augmentation

They are all outperformed by simply changing dropout masks :(



Let's take a step back...

Q: Why do we need positive pairs in contrastive learning?
A: to make the representations invariant to these kinds of
augmentations.

Problem:
It's hard to produce semantically similar augmentations for natural language.
Making the representations invariant to augmentations will hurt performance.

Q: Is there another way to utilize augmentations...?
A: we can make the representations be aware of,
but not necessarily invariant to the augmentations.



Background: Equivariant Contrastive Learning

100
I insensitive

80 -
baseline

m 0 0 = B

horizontal flips grayscale four-fold rotations vertical flips 2x2 jigsaws  four-fold blurs color inversions

kNN accuracy (%)

Dangovski, Rumen, et al. "Equivariant Self-Supervised Learning: Encouraging Equivariance in
Representations." International Conference on Learning Representations. 2022.



Background: Equivariant Contrastive Learning

100
R I insensitive
X I sensitive
>
o 80 -
—_ .
=] baseline
|9}
O
©
pd
Z 60-
horizontal flips grayscale four-fold rotations vertical flips 2x2 jigsaws  four-fold blurs color inversions
Dangovski, Rumen, et al. "Equivariant Self-Supervised Learning: Encouraging Equivariance in

Representations." International Conference on Learning Representations. 2022.




Background: Equivariant Contrastive Learning

r_> invariance (—j ﬁ—(; equivariance ﬁ‘ ™

projector p1 projector p1 predictor p2 predictor p2 predictor p2 predictor p2
backbone f backbone f backbone f backbone f backbone f backbone f

prediction
views

Encouraging  Equivariance in

Dangovski, Rumen, et al. "Equivariant Self-Supervised Learning:

Representations." International Conference on Learning Representations. 2022.



Background: Equivariant Contrastive Learning

r—} invariance ﬁ

projector p1 projector p1
backbone f backbone f

%%

view 1 J view 2

SimCLR (insensitive-based) can be a special
case of Equivariant CL (insensitive+sensitive)

Dangovski, Rumen, et al. "Equivariant Self-Supervised Learning: Encouraging Equivariance in
Representations." International Conference on Learning Representations. 2022.



Background: Equivariant Contrastive Learning

r’—(: equivariance :]—ﬁ

predictor p2 predictor p2 predictor p2 predictor p2
backbone f backbone f backbone f backbone f
‘li R, /

prediction
views

SimCLR (insensitive-based) can be a special
case of Equivariant CL (insensitive+sensitive)

"Equivariant  Self-Supervised  Learning:  Encouraging  Equivariance in

Dangovski, Rumen, et al.
Representations." International Conference on Learning Representations. 2022.



DiffCSE

“insensitive”
Contrastive Loss

esim(hi ,hj)/'r

ZN 6sim(hi,h;.")/r

— log

Sentence Encoder

i

I “You never know what you’re gonna get .”

“sensitive”

Replaced Token Detection Loss

0: original
1: replaced ? 1T ? OT ? OT 1T

Discriminator

| |

Random
Masking

________ - P

a}” “You gotta know what you’re gonna do .”
A
[ Generator (fixed) ]
A

m' “You [MASK] know what you’re gonna [MASK] .”

Chuang, Yung-Sung, et al. "DiffCSE: Difference-based Contrastive Learning for Sentence Embeddings. In Proceedings of
the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language

Technologies. 2022.




DiffCSE

“insensitive”
Contrastive Loss

esim(hi ,hj)/'r

Z;\f:1 esirn(hi,h;.")/r

— log

Sentence Encoder

i

I “You never know what you’re gonna get .”

Chuang, Yung-Sung, et al. "DiffCSE: Difference-based Contrastive Learning for Sentence Embeddings. In Proceedings of

the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies. 2022.



DiffCSE

“sensitive”
Replaced Token Detection Loss
): original 01 00 0 0 1

I replaced T T T T T T T

Discriminator

| |

a:” “You gotta know what you’re gonna do .”
A
[ Generator (fixed) ]
A

! x' “You [MASK] know what you’re gonna [MASK] .”

Chuang, Yung-Sung, et al. "DiffCSE: Difference-based Contrastive Learning for Sentence Embeddings. In Proceedings of

the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies. 2022.



DiffCSE

a:” “You gotta know what you’re gonna do .”
A
[ Generator (fixed) ]
A

! x' “You [MASK] know what you’re gonna [MASK] .”

Chuang, Yung-Sung, et al. "DiffCSE: Difference-based Contrastive Learning for Sentence Embeddings. In Proceedings of

the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies. 2022.



DiffCSE

“sensitive”
Replaced Token Detection Loss
): original 01 00 0 0O 1

I replaced T T T T T T T

Discriminator

_ | |

€T “You gotta know what you’re gonna do .”

Chuang, Yung-Sung, et al. "DiffCSE: Difference-based Contrastive Learning for Sentence Embeddings. In Proceedings of

the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies. 2022.



DiffCSE

“sensitive” ELECTRA?

Replaced Token Detection Loss

)Eoriginal 01 00 0 0 1
I replaced T T T T T T T

Discriminator

_ | |

€T “You gotta know what you’re gonna do .”

Chuang, Yung-Sung, et al. "DiffCSE: Difference-based Contrastive Learning for Sentence Embeddings. In Proceedings of

the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies. 2022.



DiffCSE

“sensitive” ELECTRA?

Replaced Token Detection Loss

)Eoriginal 01 00 0 0 1
I replaced T T T T T T T

Discriminator

| |

€T “You gotta know what you’re gonna do .”

Chuang, Yung-Sung, et al. "DiffCSE: Difference-based Contrastive Learning for Sentence Embeddings. In Proceedings of

the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies. 2022.



DiffCSE

“sensitive” ELECTRA?

Replaced Token Detection Loss

)Eoriginal 01 00 0 0 1
I replaced T T T T T T T

Discriminator

a:” “You gotta know what you’re gonna do .”
Sentence Encoder
i

iff” operation

( l I “You never know what you’re gonna get .” ' )

Chuang, Yung-Sung, et al. "DiffCSE: Difference-based Contrastive Learning for Sentence Embeddings. In Proceedings of

the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies. 2022.




DiffCSE

“sensitive” ELECTRA?

“Insensitive” Replaced Token Detection Loss
Contrastive Loss ?f ggg‘i g 01 00 0 0 1
1 esim(hi,hj)/'r T T T T T T I
—log ZN esim(hi,hj)/T
g=1 Discriminator

0anoon

“You gotta know what you’re gonna do .”
Sentence Encoder i
Aiff” operat|on Generator (fixed) ]

Random A
“ » aSkIng ,“ 1 ”
You never know what you’re gonnaget.” - 2----- ¢ “You [MASK] know what you’re gonna [MASK] .

Chuang, Yung-Sung, et al. "DiffCSE: Difference-based Contrastive Learning for Sentence Embeddings. In Proceedings of

the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies. 2022.




DiffCSE

for inference

<

Iy

o

*

Sentence Encoder

i

I “You never know what you’re gonna get .”

Chuang, Yung-Sung, et al. "DiffCSE: Difference-based Contrastive Learning for Sentence Embeddings. In Proceedings of

the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies. 2022.



Results (STS)

Model STS12 STS13 STS14 STS1S STS16 STS-B SICK-R  Avg.
GloVe embeddings (avg.)*® 55.14  70.66 5975 68.25 63.66 58.02 53.76 61.32
BERT:. . (first-last avg.)® 39.70 59.38 49.67 66.03 66.19 53.87 62.06 56.70
BERT,.c.-flow® 58.40 67.10  60.85 75.16 71.22  68.66 64.47 66.55
BERT}....-whitening® 57.83 6690 6090  75.08 71.31 68.24 63.73 66.28
IS-BERT,.cc ¥ 56.77 69.24 61.21 75:23 70.16 69.21 64.25 66.58
CMLM-BERT}... ® (1TB data) 58.20 61.07 61.67 73.32 74.88 76.60 64.80 6722
CT-BERT,.. 61.63 76.80  68.47 77.50  76.48 74.31 69.19 72.05
SG-OPT-BERT,... | 66.84 80.13 71.23 81.56 77.17 77.23 68.16 74.62
SimCSE-BERT}.c. ¢ 68.40 82.41 74.38 80.91 78.56 76.85 72.23 76.25
* SIMCSE-BERT, . . < (reproduce) 70.82 82.24 713.25 81.38 77.06 77.24 71.16 76.16
* DiffCSE-BERT}, s 72.28 84.43 7647 8390 80.54  80.59 71.23 78.49
RoBERTay,..«. (first-last avg.) 40.88 58.74  49.07 65.63 61.48 58.55 61.63 56.57
RoBERTay,, <. -whitening 46.99 63.24 D123 71.36 68.99 61.36 62.91 61.73
DeCLUTR-RoBERTay,.<. ¢ 5241 75.19 65.52 77.12 78.63 72.41 68.62 69.99
SimCSE-RoBERTay. .. 70.16 81.77 73.24 81.36 80.65 80.22 68.56 76.57
* SIMCSE-RoBERTay,, o (reproduce)  68.60 81.36 73.16 81.61 80.76 80.58 68.83 76.41
* DiffCSE-ROBERTay,. s 70.05 83.43 7549  82.81 82.12  82.38 71.19 78.21

Chuang, Yung-Sung, et al. "DiffCSE: Difference-based Contrastive Learning for Sentence Embeddings. In Proceedings of
the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language

Technologies. 2022.




Retrieval Results

SImCSE-BERTy,se

DIffCSE-BERTy,se

Query: This is not a problem.

1) This is a big problem.
2) You have a problem.

3) I don’t see why that should be a
problem.

1) I don’t see why this could be a
problem.

2) I don’t see why that should be a
problem.

3) This is a big problem.

Chuang, Yung-Sung, et al. "DiffCSE: Difference-based Contrastive Learning for Sentence Embeddings. In Proceedings of
the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language

Technologies. 2022.
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PromptBERT

* Design/search good prompt templates to better extract sentence
embeddings from BERT without fine-tuning

e Further fine-tuning with contrastive loss:
* Using sentence vectors produced by two different templates as a positive pair

Template STS-B dev.
Searching for relationship tokens
[X] [MASK] . 39.34
[X] is [MASK] . 47.26
[X] mean [MASK] . 53.94
[X] means [MASK] . 63.56
Searching for prefix tokens
This [X] means [MASK] . 64.19
This sentence of [X] means [MASK] . 68.97
This sentence of “[X]” means [MASK] . 70.19
This sentence : “[X]” means [MASK] . 73.44

Jiang, Ting, et al. "PromptBERT: Improving BERT Sentence Embeddings with Prompts." arXiv preprint
arXiv:2201.04337 (2022).



PromptBERT

Method STS12 STS13 STS14 STS15 STS16 STS-B SICK-R Avg.
Unsupervised models

IS-BERTpase T 56.77 69.24 61.21 75.23 70.16 69.21 64.25 66.58

ConSERThgse * 64.64 78.49 69.07 79.72 75.95 73.97 67.31 72.74

SimCSE-BERT g 68.40 82.41 74.38 80.91 78.56 76.85 72.23 76.25

PromptBERTbase 71-5610.18 84.58;&),22 76.98:t0,26 84-47i0.24 80.60:t0.21 81.60j:0.22 69.87;&0,40 78.54i0,15

ROBERTabase'WhiteningT 46.99 63.24 31.28 71.36 68.99 61.36 62.91 61.73
SimCSE-RoBERTap;e ' 70.16 81.77 73.24 81.36 80.65 80.22 68.56 76.57
PromptRoBERTabase 73.9410,90 84.7410,36 77.2810,41 84.99i0.25 81.74:t0,29 81.88io,37 69.5010,57 79.1510,25

DiffCSE (BERT-base) 72.28 84.43 76.47 83.90 80.54 80.59 71.23 78.49

Jiang, Ting, et al. "PromptBERT: Improving BERT Sentence Embeddings with Prompts." arXiv preprint
arXiv:2201.04337 (2022).
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RankEncoder

o Refine the vector space of existing models like SimCSE, PromptBERT
e Leverage ranking information from the whole corpus
e Train a new encoder to match the cosine similarity of rank vectors

—

Rank encoding u;

-0.63
-0.32
0.0
0.32
0.63
8 w

J
0.63
0.32
"J|> 0.0
-0.32
-0.63

v
v

v

Semantic vector space d

[2[e]efa]afi]ofa]e]n ]|

O : Input sentence vector g : Normalization function

O : Corpus sentence vector ]7 : Rank vector

Seonwoo, Yeon, et al. "Ranking-Enhanced Unsupervised Sentence Representation Learning." arXiv preprint
arXiv:2209.04333 (2022).



RankEncoder

Seonwoo, Yeon, et al.
arXiv:2209.04333 (2022).

o]
art

80 = Fs{iar?\(l:::coder-simCSE E :;Onnlzza?:iz:r-PromptBERT g FS(:rfleEncoder—SNCSE
& gSO (>580 .
E jém 379 i \
% ” é 78 é 78 //I/
” 76 76
Model STS12 STS13 STS14 STS15 STS16 STS-B SICK-R  AVG
ConSERT (Yan et al., 2021 64.64 7849 69.07 79.72 7595 7397 6731 7274
SimCSE (Gao et 1., 2021) 6840 8241 7438 8091 7856 76.85 7223 76.25
DCLR (zhou et al., 2022) 70.81 83.73 75.11 8256 7844 7831 7159 77.22
ESimCSE wu etal, 2021) 7340 8327 7725 82.66 78.81 80.17 7230 78.27
DiffCSE (Chuang et al., 2022) 7228 8443 7647 8390 80.54 80.59 71.23 7849
PromptBERT giang etar, 20220  71.56  84.58 7698 84.47 80.60 81.60 69.87 78.54
SNCSE (wang et al., 2022) 70.67 8479 7699 83.69 80.51 8135 7477 7897
RankEncoder 74.88 85.59 78.61 83.50 80.56 8155 75.78 80.07

"Ranking-Enhanced Unsupervised Sentence Representation Learning."

arXiv preprint



RankEncoder

 RankEncoder can be aware of the fine-grain interaction between the
similar sentences in the corpus
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(a) PromptBERT (b) RankEncoder

Seonwoo, Yeon, et al. "Ranking-Enhanced Unsupervised Sentence Representation Learning." arXiv preprint
arXiv:2209.04333 (2022).



RankEncoder

e Better uniformity

Base Encoder £
SImCSE PromptBERT SNCSE

E -2.42 -1.49 -2.21
RankEncoder g -3.23 -3.31 -3.20

Seonwoo, Yeon, et al. "Ranking-Enhanced Unsupervised Sentence Representation Learning." arXiv preprint
arXiv:2209.04333 (2022).



Conclusion

o We are closing the gap between unsupervised and supervised
sentence representations:

Model STS12 STS13 STS14 STS1S STS16 STS-B SICK-R  Avg.

Unsupervised models

* SINCSE-BERT}.s¢ 68.40 82.41 74.38 80.91 78.56 76.85 72.23 76.25
RankEncoder (BERT-base) 74.88 85.59 78.61 83.50 80.56 81.55 75.78  80.07

Supervised models

* SINCSE-BERT ¢ 75.30 84.67 80.19 85.40 80.82 84.25 80.39 81.57
PromptBERT (BERT-base) 7548 85.59 80.57 85.99 81.08 84.56 80.52 81.97

o Contrastive learning should have more potential in NLP for using
pre-trained language models in representation learning!
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Parameter-Efficient Fine-tuning

* PLMs are gigantic
* Need a copy for each downstream task

Fine-tuned Model
for Task 1

Fine-tuned Model
for Task 3

Fine-tuned Model
for Task 4 110M

110M

BERT

(a PLM)

110M
110M parameters



Parameter-Efficient Fine-tuning

* Problem: PLMs are gigantic (in terms of numbers of parameters,
model size, and the storage needed to store the model)

* Solution: Reduce the number of parameters by parameter-efficient
fine-tuning



Parameter-Efficient Fine-tuning

* Use a small amount of parameters for each downstream task

BERT

110M parameters

Fine-tune

BERT

BERT

BERT

BERT

Task-specific para-
meters for task 1

Task-specific para-
meters for task 2

Task-specific para-
meters for task 3

Task-specific para-
meters for task 4



Parameter-Efficient Fine-tuning

* Use a small amount of parameters for each downstream task

Task-specific para-
meters for task 1

Task-specific para-
meters for task 2

BERT . BERT +

Task-specific para-

110M parameters meters for task 3

Task-specific para-
meters for task 4



Parameter-Efficient Fine-tuning

* What is standard fine-tuning really doing?

* Modify the hidden representations (h) of the PLM such that it can perform
well on downstream task

Before Fine-tuning

[CLS] —

|
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N JoAeq JowJojsued)
Vo
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He, Junxian, et al. "Towards a Unified View of Parameter-Efficient Transfer Learning." International Conference on
Learning Representations. 2022.



Parameter-Efficient Fine-tuning

* What is standard fine-tuning really doing?

* Modify the hidden representations (h) of the PLM such that it can perform
well on downstream task

=

After Fine-tuning

Classifier 1_‘4

[CLS] —
Head —

|
?

N J9Aeq Jowuojsued)
LI

—)

ﬂf
]
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He, Junxian, et al. "Towards a Unified View of Parameter-Efficient Transfer Learning." International Conference on
Learning Representations. 2022.



Parameter-Efficient Fine-tuning

* Fine-tuning = modifying the hidden representation based on a PLM
Before Fine-tuning After Fine-tuning

L jagag

100000 ——00000;-~
LT

h:hidden representation = h+ Ah
calculated by the original PLM h' .hldden representation
He, Junxian, et al. "Towards a Unified View of Parameter-Efficient Transfer Learning." /ntern@j&lfbbl?artedorby the flne-tunEd mOdEI

Learning Representations. 2022.




2022 AACL-UCNLP

Part 4:
How to use PLMs:

Parameter-efficient fine-tuning
4-1 Adapter



Parameter-Efficient Fine-tuning: Adapter

e Use special submodules to modify hidden representations!
Before Fine-tuning After Fine-tuning

L jagag

SI0000 ===00000; -+~
Gl 10000

h:hidden representation = h+ Ah
calculated by the original PLM h' .hldden representation
He, Junxian, et al. "Towards a Unified View of Parameter-Efficient Transfer Learning." /ntern@j&lfbbl?artedorby the flne-tunEd mOdEI

Learning Representations. 2022.




Parameter-Efficient Fine-tuning: Adapter

* Adapters: small trainable subm?dules inserted in transformel;s

Layer Norm Layer Norm
o
Adapter
|
— 1 Feed-forward | Feed-forward
a Transtormer Layer oy t » t
Layer Norm Layer Norm
¢
Adapter
I
Multi-head Multi-head
atte?tion attention

Houlsby, Neil, et al. "Parameter-efficient transfer learning for NLP." /nternrt/ona/ Conference on Machine Learning.
PMLR, 2019.



Parameter-Efficient Fine-tuning: Adapter

* Adapters 1
Layer Norm
Adapter
Inside of the Feed forward
transformer
layer, only Layer Norm
adapters are
updated
Adapter <
Multi- headed

atte?tion

Houlsby, Neil, et al. "Parameter-efficient transfer Iear'\ing for NLP." Internationa
PMLR, 2019.

h' =

h + Ah

Adapter
Ah

Feed-forward
up-project

Nonlinearity

E—

Feed-forward
down-project

Conference. on Machine Learning.

Skip-
connection

hidden
represen-
tation




Parameter-Efficient Fine-tuning: Adapter

 Adapters: During fine-tuning, only update the adpaters and the
classifier head

t

Classifier Adapter @:
Head

Feed-forward
up-project
I
Transformer Layer 2 w/ adapter Nonlinearity

Feed-forward
down-project

|

Transformer Layer 12 w/ adapter

Transformer Layer 1 w/ adapter

Embedding Layer

Houlsby, Neil, et al. "Parameter-efficient transfer learning for NLP." International Conference on Machine Learning.
PMLR, 2019.



Parameter-Efficient Fine-tuning: Adapter

* Adapters: All downstream tasks share the PLM; the adapters in each
layer and the classifier heads are the task-specific modules

t

Classifier Adapter @:
Head

Feed-forward
up-project
I
Transformer Layer 2 w/ adapter Nonlinearity

Feed-forward
down-project

|

Transformer Layer 12 w/ adapter

Transformer Layer 1 w/ adapter

Embedding Layer

Houlsby, Neil, et al. "Parameter-efficient transfer learning for NLP." International Conference on Machine Learning.
PMLR, 2019.
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Parameter-Efficient Fine-tuning: LoRA

e Use special submodules to modify hidden representations!

Before Fine-tuning After Fine-tuning

]| ——

10000 =—00001
iy i

= h + Ah

He, Junxian, et al. "Towards a Unified View of Parameter-Efficient Transfer Learning." International Conference on
Learning Representations. 2022.



Parameter-Efficient Fine-tuning: LoRA

* LoRA: Low-Rank Adaptation of Large Language Models

t
Layer Norm

t
Layer Norm

@:

Feed-forward

o

LoRA Feed-forward

Transformer 4 4
I |
layer Layer Norm "» Layer Norm
Multi-head Multi-head
attention attention

cuage Models." International Conference on Learning 1

Hu, Edward J., et al. "LoRA: Low-Hank Adaptation of Large Lan
Representations. 2021.




Parameter-Efficient Fine-tuning: LoRA

* LoRA

Feed-forward

)
I

Feed-forward
down-project
|

Nonlinearity
|

Feed-forward
up-project

4
|

$:

Feed-forward
down-project

Nonlinearity

@:

Feed-forward
up-project

Hu, Edward J., et al. "LoRA: Low-Rank Adaptation of Large Language Models." International Conference on Learning

Representations. 2021.




Parameter-Efficient Fine-tuning: LoRA

* LoRA h' = h+ Ah

I <

) I:;:I Ah
h |:':| deby

dprw L
Feed-forward ¢
up-project
a
dmodel dmodel

—— 1 |

Hu, Edward J., et al. "LoRA: Low-Rank Adaptation of Large Language Models." International Conference on Learning
Representations. 2021.




Parameter-Efficient Fine-tuning: LoRA

* Low-Rank Adaptation of Large Language Models

* Motivation: Downstream fine-tunings have low intrinsic dimension

* Weight after fine-tuning = W, (pre-trained weight) +AW (updates to the weight)
* Hypothesis: The updates to the weight (AW) also gave a low intrinsic rank

* Fine-tuned weight = W, + AW = W, + BA, rank v < min(drrw, dmodet)

i
@‘ |
drrw
drrw B
Pre-trained weight i
Wo
r
dmodel A
| | Admodel

Hu, Edward J., et al. "LoRA: Low-Rank Adaptation of Large Language Models." International Conference on Learning
Representations. 2021.



Parameter-Efficient Fine-tuning: LoRA

* LoRA: All downstream tasks share the PLM; the LoRA in each layer
and the classifier heads are the task-specific modules

Classifier
+ )< I
Head

Feed-forward |
down-project

Transformer Layer 12 w/ LoRA

Transformer Layer 2 w/ LoRA Nonlinearity

Transformer Layer 1 w/ LoRA $’ |

Feed-forward

Embedding Layer up-project

Hu, Edward J., et al. "LoRA: Low-Rank Adaptation of Large Language Models." International Conference on Leaqpaiag.
Representations. 2021.
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Parameter-Efficient Fine-tuning: Prefix Tuning

e Use special submodules to modify hidden representations!

Before Fine-tuning After Fine-tuning

(Iane I

Prefix

10000 =—[00001
iy i

= h + Ah

He, Junxian, et al. "Towards a Unified View of Parameter-Efficient Transfer Learning." International Conference on
Learning Representations. 2022.



Parameter-Efficient Fine-tuning: Prefix Tuning

ix

noun [C ]

* What is “prefix”

UK%) /'prii.fiks/ us4) /'pri.fiks/

prefix noun [C] (GRAMMAR)

+
iii

G ANGuAGE

a letter or group of letters added to the
beginning of a word to make a new word:

* Something that is put in front of another something

https://dictionary.cambridge.org/zht/%E8%AI%IE%ES5%85%B8/%E8%8B%B1%BEB%AA%IE/prefix



https://dictionary.cambridge.org/zht/%E8%A9%9E%E5%85%B8/%E8%8B%B1%E8%AA%9E/prefix

Parameter-Efficient Fine-tuning: Prefix Tuning

* Prefix Tuning: Insert trainable prefix in each layer

Y Y Y
> >3 3
Bos] -~ -3~ L ~-C- 5 | —
5 - 3 -3~ -3z g - e
3 - & - El- B B-
3 s "3~ 3 "E3@~3 .. 3 I
s - & -3~ [ - o -
& & 9 & &
<
e - 3 -3~ 2 ~C3-8 2 - I
© - N =z

Li, Xiang Lisa, and Percy Liang. "Prefix-Tuning: Optimizing Continuous Prompts for Generation." Proceedings of the 59th
Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural
Language Processing (Volume 1: Long Papers). 2021.



x’1I Prefix Tuning
T T T I
X1~ @ a1, — @ aq 3 "’@ @ &1,5_’69

Softmax
Standard aq 1 a1 2 aq 3 a1 4 a1,5

Self-Attention Aézﬁz < BN

1 V1 qz k, v, 3 V3 (g4 k4 Vy Qs Kg Vs

ﬁl]l[ll]lﬁ[lll]l]ll]l]l




h'=h+ Ah le Prefix Tuning
Ah L. p

“Lﬁ?@ “Lz‘ﬁ’@ a1,p; 11— @ A1,2 = @ a3 — @ @ 1,5 _’®
Softmhx
A1, X1p,| A1p, 1,1 a1 2 ay, 3 1,4 051,5
¢ f\ A'
Z% \

kp1 ‘Up kpz vpz kps vps q1 1 3 V3 5 Vg
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e

X1 X2 X3 X4 X5



Parameter-Efficient Fine-tuning: Prefix Tuning

* Prefix Tuning: Only the prefix (key and value) are updated during fine-
tuning

kyp, vy, kp,Vp, Kp, Vp,

Prefix in Transformer Layer 12

Prefix in Transformer Layer 2

layer 2 |_| I u l |_| I Transformer Layer 1

Prefix in

layer 1 SNCRENCERE Embedding Layer

Li, Xiang Lisa, and Percy Liang. "Prefix-Tuning: Optimizing Continuous Prompts for Generation." Proceedings of the 59th
Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural
Language Processing (Volume 1: Long Papers). 2021.
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Parameter-Efficient Fine-tuning: Soft Prompting

* Soft Prompting
* Prepend the prefix embedding at the input layer

— - -
Prefixembedding [__1 —

- [BOS] — -—

Input -
—
sequence

T JoAe Jawuojsued)

01

¢ JoAe7 Jswuoysued)

J9Ae]
3ulppaquw3

- - g s [ s [

Lester, Brian, Rami Al-Rfou, and Noah Constant. "The Power of Scale for Parameter-Efficient Prompt
Tuning." Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing. 2021.

N J2Ae7 Jawojsued]



Parameter-Efficient Fine-tuning: Soft Prompting

* Soft Prompting can be considered as the soften version of prompting
* (Hard) prompting: add words in the input sentence

translate — N e SN — I
the —

sentence

JoAeq Suippaqui]
|j
!
T 49Ae7 Jawuojsued|
¢ 19Ae7 Jswuoysued)
N J9Aeq Jawuojsued)
!

00l

Hard -
prompt—_, ~-— - -/3- ~

Lester, Brian, Rami Al-Rfou, and Noah Constant. "The Power of Scale for Parameter-Efficient Prompt
Tuning." Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing. 2021.



Parameter-Efficient Fine-tuning: Soft Prompting

* Hard Prompts: words (that are originally in the vocabulary)

Translate the sentence

e Soft Prompts: vectors (can be initialized from some word
embeddings)

Il

Lester, Brian, Rami Al-Rfou, and Noah Constant. "The Power of Scale for Parameter-Efficient Prompt
Tuning." Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing. 2021.



Parameter-Efficient Fine-tuning: Soft Prompting

* How to determine the length of the
soft prompt embedding

* The prompt needs to be long enough o
. —4= 5
* Increasing the prompt length shows 90 -« 2 x
. . . . . == 100 &
diminishing performance gain when the o -+ 150 "
. S 80 /x
length is long enough 2 =
3 70 //
3 60
50 + /
I—‘/.\.
10° 1010
Model Parameters
(a) Prompt length

Lester, Brian, Rami Al-Rfou, and Noah Constant. "The Power of Scale for Parameter-Efficient Prompt
Tuning." Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing. 2021.



Parameter-Efficient Fine-tuning: Soft Prompting

* How to initialize the soft prompt
embedding? o

* Random initialization Randomn Unifor
* Sample from the word embedding ™ ™ “ //"

of top 5000 frequent words 2 .
p . q % 80 x/
e Class label in the downstream task /
L_Ql 70 z
L%' - x/x \-
50 \
108 10° 1010

Model Parameters

(b) Prompt initialization

Lester, Brian, Rami Al-Rfou, and Noah Constant. "The Power of Scale for Parameter-Efficient Prompt
Tuning." Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing. 2021.
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Parameter-Efficient Fine-tuning

* Fine-tuning = modifying the hidden representation based on a PLM
Before Fine-tuning After Fine-tuning

L jagag

100000 ——00000;-~
LT

h:hidden representation = h+ Ah
calculated by the original PLM h' .hldden representation
He, Junxian, et al. "Towards a Unified View of Parameter-Efficient Transfer Learning." /ntern@j&lfbbl?artedorby the flne-tunEd mOdEI

Learning Representations. 2022.




Parameter-Efficient Fine-tuning: Adapter

e Adapters t h' = h+ Ah
Layer Norm Adapter ) h
Adapter
Feed-forward
Inside of the Feed forward up-project
transformer |
layer, only Layer Norm Nonlinearity
adapters are ::
updated
Adapter Feed-forward .
down-project hidden
Multi- heeded T represen-
attention .
| ) e—
Houlsby, Neil, et al. "Parameter-efficient transfer Iear'wing for NLP." International Conference on Machine Learning.

PMLR, 2019.



Parameter-Efficient Fine-tuning: LoRA

* LoRA h' = h+ Ah

I <

) I:;:I Ah
h |:':| deby

dprw L
Feed-forward ¢
up-project
a
dmodel dmodel

—— 1 |

Hu, Edward J., et al. "LoRA: Low-Rank Adaptation of Large Language Models." International Conference on Learning
Representations. 2021.




h'=h+ Ah le Prefix Tuning
Ah L. p
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Softmhx
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Parameter-Efficient Fine-tuning: Soft Prompting

* Soft Prompting
* Prepend the prefix embedding at the input layer

— - -
Prefixembedding [__1 —

[BOS] — -— ~

T JoAe Jawuojsued)

01

¢ JoAe7 Jswuoysued)

J9Ae]
3ulppaquw3

~ - - -3

Lester, Brian, Rami Al-Rfou, and Noah Constant. "The Power of Scale for Parameter-Efficient Prompt
Tuning." Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing. 2021.

N J2Ae7 Jawojsued]



Parameter-Efficient Fine-tuning

e Benefit 1: Drastically decreases the task-specific parameters

Task-specific
parameters®

Percent Trainable

Adapter

(")(dmodelrl')

<5%

LoRA

G(dmodelrl')

<0.1%

Prefix Tuning

@(dmodelnl')

<0.1%

Soft Prompt

@(dmodeln)

<0.05%

Trainable
parameters
llustration

Nonlinearity
|

r
I
I

n:Prefix Iength

”pli

pn vpn

il

n:Prefix length

*not including the classifier head




Parameter-Efficient Fine-tuning

* Benefit 2: Less easier to overfit on training data; better out-of-domain

performance

Domain

Dataset

Training -
dataset
TextbookQA  Book
BioASQ Bio
OOD test RACE Exam
dataset RE Wiki
DuoRC Movie
DROP Wiki

54.3 £3.7
779 £04
59.8 0.6
88.4 +0.1
68.9 +0.7
68.9 +1.7

Standard Soft Prompt
949 +0.2 94.8 +0.1

66.8 +2.9
79.1 £0.3
60.7 0.5
88.8 +0.2
611 =11
6F.1 =19

Lester, Brian, Rami Al-Rfou, and Noah Constant. "The Power of Scale for Parameter-Efficient Prompt
Tuning." Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing. 2021.

A =Soft Prompt - Standard



Parameter-Efficient Fine-tuning

* Benefit 3: Fewer parameters to fine-tune, making them good

candidates when training with small dataset

low-resource

high-resource

(115k) (115k) (20k)

93.79.2 69.1) ¢ 95.29,

Pataset. CHEMPROT ACL-ARC SCIERC HYP. RCT AGNEWS HELPFUL. IMDB
(Train set size) >(4169) (1688) (3219)  (515) (180k)
RoBERTa-full model 81 -7().8 65-03.6 78518 88.93_3 87.0()'1
RoBERTa-adapter, r=256 82.99¢6 67.543 80.8¢ 7 9044 87.10.1

He, Ruidan, et al. "On the Effectiveness of Adapter-based Tuning for Pretrained Language Model
Adaptation." Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th
International Joint Conference on Natural Language Processing (Volume 1: Long Papers). 2021.

93.80.1 69.00.4 95.70.1




Parameter-Efficient Fine-tuning

* Which parameter-efficient fine-tuning should one select?
* No one-size-fit-all

Method SST-2 MRPC CoLA RTE OQNLI STS-B MNLI QQP Avg.

Best Performance on GLUE Dev
Full-model Fine-tuning 91,63 9094 62.08 6643 8995 89.76 83.23 87.35 82.67
Parameter- Adapter 91.86 8986 61.51 71.84 9055 88.63 83.14 86.78 83.02
efficient {Preﬁx-tuning 9094 91.29 5537 7690 90.39 87.19 81.15 8330 82.07
fine-tuning LoRA 91.51 90.03 6047 7148 8993 8565 8251 8598 82.20

Boldface: best performance
Underline: second best performance

Mao, Yuning, et al. "UniPELT: A Unified Framework for Parameter-Efficient Language Model Tuning." Proceedings of the
60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). 2022.
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Using PLMs with different amounts of data

* Our goal: fine-tune a model for a target downstream task using a PLM

* Traditionally, we assume that we have sufficient amount of data for the target
task

I

I

Il
" [y

[
4 L'y

Y [
4

-
"
I [y
5
I
I
Il

Target task dataset
(labeled)



Using PLMs with different amounts of data

* Our goal: fine-tune a model for a target downstream task using a PLM
 Sometimes, we have additional labeled dataset for other datasets

LI
A" Il
M Al

Target task dataset Datasets of other tasks
(labeled) (labeled)



Using PLMs with different amounts of data

* Our goal: fine-tune a model for a target downstream task using a PLM
* Sometimes, labeled data for the target task is scarce

% % \
T

Target task dataset
(labeled)




Using PLMs with different amounts of data

* Our goal: fine-tune a model for a target downstream task using a PLM

 Sometimes, we only have a few labeled data for the target task, and we have
unlabeled dataset related to the target task

25

Target task dataset . o Jiabeled
(labeled) arget task dataset (Unlabeled)

P




Using PLMs with different amounts of data

* Our goal: fine-tune a model for a target downstream task using a PLM
* Sometimes, we have no labeled data for the target task

Target task dataset
(labeled)



Using PLMs with different amounts of data

* Our goal: fine-tune a model for a target downstream task using a PLM
* How to use PLMs with different amount of data?

R ‘ f%‘@I.

jﬁl-g

Target task dataset Datasets of other tasks Data related to target task
(labeled) (labeled) (Unlabeled)
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Intermediate-task fine-tuning

* Goal: Obtain a model for task (target task)
e Standard supervised learning

Target task dataset

+

Pre-trained language Fine-tuned model

model for target task




Intermediate-task fine-tuning

* Goal: Obtain a model for task (target task)

* Intermediate-task fine-tuning: transfer the knowledge from a model fine-
tuned on other tasks (intermediate-tasks)

Intermediate-task dataset(s) Target task dataset

+ +

Pre-trained Fine-tuned model Fine-tuned model

for
language model —_— , — for target task
intermediate-tasks

Vu, Tu, et al. "Exploring and Predicting Transferability across NLP Tasks." Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing (EMNLP). 2020.




Intermediate-task fine-tuning

* What kind of intermediate tasks can help target task?

* This paper studies the transferability of 33 datasets, which can be categorized
into three types: classification (CR), question answering (QA), and sequence

labeling (SL)
Task
SNLI (Bowman et al., 2015) SQuAD-2 (Rajpurkar et al., 2018) ST (Bjerva et al., 2016)
MNLI (Williams et al., 2018) NewsQA (Trischler et al., 2017) CCG (Hockenmaier and Steedman, 2007)
QQP (Iyer et al., 2017) HotpotQA (Yang et al., 2018) Parent (Liu et al., 2019a)
QNLI (Wang et al., 2019b) SQuAD-1 (Rajpurkar et al., 2016)  GParent (Liu et al., 2019a)
SST-2 (Socher et al., 2013) DuoRC-p (Saha et al., 2018) GGParent (Liu et al., 2019a)
SciTail (Khot et al., 2018) DuoRC-s (Saha et al., 2018) POS-PTB (Marcus et al., 1993)
CoLA (Warstadt et al., 2019) DROP (Dua et al., 2019) GED (Yannakoudakis et al., 2011)
STS-B (Cer et al., 2017) WikiHop (Welbl et al., 2018) NER (Tjong Kim Sang and De Meulder, 2003)
MRPC (Dolan and Brockett, 2005) BoolQ (Clark et al., 2019) POS-EWT (Silveira et al., 2014)
RTE (Dagan et al., 2005, et seq.) ComQA (Abujabal et al., 2019) Conj (Ficler and Goldberg, 2016)
WNLI (Levesque, 2011) CQ (Bao et al., 2016) Chunk (Tjong Kim Sang and Buchholz, 2000)

Vu, Tu, et al. "Exploring and Predicting Transferability across NLP Tasks." Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing (EMNLP). 2020.



Intermediate-task fine-tuning

* What kind of intermediate tasks can help target task?
* p;: the performance of directly fine-tuning on target task ¢
* ps_¢: the performance of transferring from intermediate-task s to a target task ¢

Target task (CR)
e ——————————————————————————————————————————————-

Task CoLA SST-2 MRPC STS-B QQP MNLI QNLI RTE WNLI SNLI SciTail

CoLA 51.0% g 2 866 864 875 842 914 603 549 905 9381
SST2  BaZ~ 10 %2 869 870 841 913 560 535 909 935-
Intermediate-l Mrpc 51.0 "33~ 871 871 844 913 617 479 909 935
STS-B 488 919 972 ~ :-P_-@,:& k&Q.4 840 904 650 352 909 92.1°
task QQP 494 920 877 X&S;\ SN =842 907 617 366 909 9291
(CR) MNLI %oo 035 876 870 fis :«:._‘1-.2.1 5 776 408 912 956, |Psot
QNLI 499 925 866 886 866 sias 1% X 704 380 9Ll 945
RTE 521 921 89 870 868 844 9?3~ . Yo ®7, 910 935
WNLI F4.5 917 842 848 870 842 914 Tow L5 1NR009 936 .
SNLI 542  93. 875 869 84.6 904 77.6 39F & U7 '~95.2 x

Ps—t| >° -0 2%e oo ' ' ' ~ R
SciTail 0.8 91.9 82.2 88.1 86.6 843 91.0 693 465 91'8‘

5 mes 5 s 5 ses 5 s s w5 s 5 wes 5 s 5 wes 5 mes 5 wew 8 mew 5 owew

Vu, Tu, et al. "Exploring and Predicting Transferability across NLP Tasks." Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing (EMNLP). 2020.




Intermediate-task fine-tuning

* What kind of intermediate tasks can help target task?
* p;: the performance of directly fine-tuning on target task ¢
* ps_¢: the performance of transferring from intermediate-task s to a target task ¢

Target task (CR)
e ——————————————————————————————————————————————-

Task CoLA SST-2 MRPC STS-B QQP MNLI QNLI RTE WNLI SNLI SciTail

CoLA 922 866 864 8.5 842 914 603 |549] 905 9338

SST-2 542 842 869 870 841 913 560 535 909 935

Intermediate-1 Mrrc 510 923 87.1 871 844 913 617 479 909 935
STS-B 488 919 873 85 864 840 904 650 352 909 92.1

task QQP 494 920 877 885 73 842 907 617 366 909 929
(CR) MNLI 500 935 876 870 871 82 915 77.6 408 912 95.6
QNLI 499 925 866 886 866 844 704 380 911 945

RTE 521 921 839 870 868 844 913 6 507 910 935

WNLI 545 917 842 848 870 842 914 606 451 909 936

SNLI 542 931 868 875 869 846 904 77.6 39.4 7 952

SciTail 50.8 91.9 82.2 88.1 86.6 843 91.0 693 465 91.0

Vu, Tu, et al. "Exploring and Predicting Transferability across NLP Tasks." Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing (EMNLP). 2020.



Intermediate-task fine-tuning

* What kind of intermediate tasks
can help target task?

FULL — FULL

* The relative transfer gain is Isretgt—  CR QA SL
defined as g5, = 22tPt CR | 63an| 3.4 0 0.3 (10)
Pt QA 3.2 (10) 9.5 (11) 0.3 (9)
 Same type of tasks is the most SL 5.3 ®) 2.5 (10) 0.5 (11)
beneficial

A summary of our transfer results for each
combination of the three task classes in the three data
regimes. Each cell represents the relative gain of the
best source task in the source class (row) for a given tar-
get task, averaged across all of target tasks in the target
class (column). In parentheses, we additionally report
the number of target tasks (out of 11) for which at least
one source task results in a positive transfer gain. The

diagonal cells indicate in-class transfer.

Vu, Tu, et al. "Exploring and Predicting Transferability across NLP Tasks." Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing (EMNLP). 2020.



Intermediate-task fine-tuning

 Does the dataset size affect the Intermediate (src)— target

transferability of intermediate [FuLL — Limitep)
tasks? lsretgt—  CR QA SL
CR 56.9 (11) 36.8 (10) 2.0 (10

* Limited dataset size: 1K training

. . 31
samples only QA 443 (11  63.3(11) 5.3 (11)

SL 45.6 (11) 39.2 (6) 209 (11

* Intermediate-task transfer s
beneficial even when the

I LIMITED — LIMITEDI

. . lsretgt—

intermediate-task or the target é; ¢ (;1;7 i ?/"; a SlLl i

task has limited data QA 37.3 (11) 49.3 (11) 4.2 (11)
SL 29.3 (10) 30.0 (8) 10.2 (11)

Vu, Tu, et al. "Exploring and Predicting Transferability across NLP Tasks." Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing (EMNLP). 2020.



Intermediate-task fine-tuning

* When fine-tuning the whole model, we will have a full-sized model
for each intermediate task

Fine-tuned Model
for Intermediate-Task A

13B

Fine-tuned Model
for Intermediate-Task C

138 Fine-tuned Model
for Intermediate-Task D

Full model (T5-13B) fine-tuning

13B




Intermediate-task fine-tuning

* When fine-tuning with soft prompt tuning, we only need to transfer

the prompt embedding instead of the whole model

Fine-tuned Model Prompt for
for Intermediate-Task A

Intermediate- 204K

Task A

o Prompt for
13B dllals tune(j,l Hilgel Intermediate- 204K
for Intermediate-Task C Task C

Prompt for
W IEGIEE 204K
Task D

Full model (T5-13B) fine-tuning ﬁ Prefix tuning

138 Fine-tuned Model

for Intermediate-Task D

0.00184%



Intermediate-task fine-tuning

* Soft Prompt Transfer (SPoT): Using soft prompts for transferring
* SPoT yields positive transfer in many cases

C4
DocNLI

Yel2, o o . MNLI is a good
""" intermediate-task

Intermediate- CxC

relative transfer gain
task DROP

WinoGrande

HellaswAG [N
MultiRC
CosmosQA
RACE

CoLA STS-B CR MRPC RTE BoolQ WiC WSC COPA CB

Target task

Vu, Tu, et al. "SPoT: Better Frozen Model Adaptation through Soft Prompt Transfer." Proceedings of the 60th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). 2022.



Intermediate-task fine-tuning

e Soft Prompt Transfer (SPoT): The soft prompt of a task can be used
as the task embedding of that task.

— - — Prompt s Task
Prompt Prompt Prompt Prompt embedding E— embedding
for for for for

Task A Task B Task C Task D

Prompt embedding library

Vu, Tu, et al. "SPoT: Better Frozen Model Adaptation through Soft Prompt Transfer." Proceedings of the 60th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). 2022.



Intermediate-task fine-tuning

e Soft Prompt Transfer (SPoT): Given a novel task, we can first train
only using the novel task, and find a intermediate task whose task
embedding is most similar to the novel task and use it to transfer

Cosine similarity = 0.87

& I

Prompt for Target Task
(without initializing the prompt
using soft prompt transfer)

Prompt  Prompt Prompt  Prompt Cosine similarity = 0.42
for for for for

Task A Task B Task C Task D

Prompt embedding library

Vu, Tu, et al. "SPoT: Better Frozen Model Adaptation through Soft Prompt Transfer." Proceedings of the 60th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). 2022.



Intermediate-task fine-tuning

e Soft Prompt Transfer (SPoT): Selecting the best intermediate-task
soft prompt

Method Change Avg. score (16 target tasks)
Abs. Rel.
w/0 SPOT: | BASELINE - - 74707 |
| BRUTE-FORCE SEARCH (k = 48) ‘
Oracle SPoT: ‘ ORACLE 6.00s 265,  80.700
COSINE SIMILARITY
Cosine similarity = 0.87 BEST OF ToP-k
L k=1 1.50_5 11.71_1 76.20_1
k=3 2706 16.61; 77.405
k=6 3.801 20.0q; 78.505
; k=9 4504 22.21, 79.2 0.1
Prompt Prompt Prompt Prompt  Cosine similarity = 0.42 k=12 5.000 23.62> 79.7 04
Talez A T:(:IZB T.—:cs’lzc T::IID k=15 5408 2493 80.103

Prompt embedding library

Vu, Tu, et al. "SPoT: Better Frozen Model Adaptation through Soft Prompt Transfer." Proceedings of the 60th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). 2022.



2022 AACL-UCNLP

Part 5:
How do PLMs work:
Using PLMs with different amounts of data

5-1.1: Multi-task fine-tuning:
using labeled data from other tasks



Multi-task fine-tuning

* Fine-tune the PLM using the auxiliary task datasets and the target
task dataset simultaneously

Fine-tuned model
— for

all tasks

Auxiliary task dataset(s) Target task dataset

How to weight the loss of different tasks?

Chen, Shuxiao, et al. "Weighted Training for Cross-Task Learning." International Conference on Learning Representations.
2022.



2022 AACL-UCNLP

Part 5:

How do PLMs work:

Using PLMs with different amounts of data
5-2: Prompt tuning for few-shot learning



Prompt tuning for few-shot learning

e Standard fine-tuning mostly assumes a large amount of labeled data

D N D

] =| |= D
E _TEB% n E \ Pre-trained Language Model
-i:._f:g = (Fine-tuning)

MNLI-(m/mm) QQP QNLI SST-2 CoLA STS-B MRPC RTE
392k 363k 108k 67k 8.5k 5.7k 35k 25k (size of training set)




K [CLS] Jack likes dog. [SEP] Jack loves ice cream. [SEP] >>>\

1

e [CLS] The spring break is coming soon. [SEP] The spring
break was over. [SEP] >>> 2 0: entailment

e [CLS] | am going to have dinner. [SEP] | am going to eat 1: neutral
something. [SEP] >>> 0 2: contradiction

K [CLS] Mary likes pie. [SEP] Mary hates pie. [SEP] >>> ? /

L— Q

Natural language inference (NLI): premise + hypothesis

NLI model



Prompt tuning for few-shot learning

* Data scarcity in downstream tasks is very common

* Few-shot learning: We have some labeled training data
* “Some” = less than a hundred

— Pre-trained Language Model

Target task dataset
(labeled)



[CLS] The spring break is coming soon. [SEP] The spring
break was over. [SEP] >>> 2
[CLS] | am going to have dinner. [SEP] | am going to eat
something. [SEP] >>> 0
[CLS] Mary likes pie. [SEP] Mary hates pie. [SEP] >>> ?

v

V

Natural language inference (NLI): premise + hypothesis



Prompt tuning for few-shot learning

[CLS] The spring break is coming soon. Is it true that the
spring break was over? >>> no

[CLS] | am going to have dinner. Is it true that | am going
to eat something? >>> yes

[CLS] Mary likes pie. Is it true that Mary hates pie. [SEP]

>>> 7 /

] —
=l @
‘i

Natural language inference (NLI): premise + hypothesis



Prompt tuning for few-shot learning

* By converting the data points in the dataset into natural language
prompts, the model may be easier to know what it should do

/'[CLS] The spring break is coming sooh /'[CLS] The spring break is coming soo)

[SEP] The spring break was over. [SEP] >>> Is it true that the spring break was
contradiction over? >>>no

* [CLS] I am going to have dinner. [SEP] | am  [CLS] I am going to have dinner. Is it
going to eat something. [SEP] >>> true that | am going to eat something?
entailment >>> yes

* [CLS] Mary likes pie. [SEP] Mary hates pie.  [CLS] Mary likes pie. Is it true that

[SEP] >>> 7 / Mary hates pie. [SEP] >>> 7 /




Prompt tuning for few-shot learning

* Format the downstream task as a language modelling task with pre-
defined templates into natural language prompts

verb (used with object)

5 to move or|induce to action:
What prompted you to say that?

6 to occasion or|incite; inspire:
What prompted his resignation?

noun

11 the act of prompting.

https://www.dictionary.com/browse/prompt



https://www.dictionary.com/browse/prompt

Prompt tuning for few-shot learning

* What you need in prompt tuning h

1. A prompt template S\ 4

2. APLM

3. Averbalizer '

So. %o 4, 0, o0
OO’ S % 4 Qj/é@
Premise Mary likes pie. T
Hypothesis  Mary hates pie. LM Head
¥ "label" : [

O : "entailment” yes T
1 : "neutral” # maybe Prompt
2 : "contradiction" I ? .
2 tradict no template: Premise ? [MASK], Hypothesis

Schick, Timo, and Hinrich Schiitze. "Exploiting Cloze-Questions for Few-Shot Text Classification and Natural Language

Inference." Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics:
Main Volume. 2021.



Prompt tuning for few-shot learning

* What you need in prompt tuning

1. A prompt template: convert data points into a natural language prompt

Premise Mary likes pie
i > ‘ Mary likes pie  ? [MASK], Mary hates pie
Hypothesis  Mary hates pie
Label 2
¥ "label" : [

® : "entailment"

Prompt - _ STTCT, - o
template remise 2| ], ypOthesis

1 : "neutral"

2 : "contradiction"
]

Schick, Timo, and Hinrich Schiitze. "Exploiting Cloze-Questions for Few-Shot Text Classification and Natural Language

Inference." Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics:
Main Volume. 2021.




Prompt tuning for few-shot learning

* What you need in prompt tuning
2. A PLM: perform language modeling

. :
60000}@& % 0 % /))&//é
T Q

LM Head

BERT

]

Prompt

: = .
template: Premise ? [MASK], Hypothesis

Schick, Timo, and Hinrich Schiitze. "Exploiting Cloze-Questions for Few-Shot Text Classification and Natural Language

Inference." Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics:
Main Volume. 2021.



Prompt tuning for few-shot learning

* What you need in prompt
tuning
3. A verbalizer: A mapping

between the Ilabel and the
vocabulary

* Which vocabulary should
represents the class “entailment”

¥ "label" : [

® : "entailment" yes
1 : "neutral” # maybe
no

2 : "contradiction"

0O 1 2
Softmax
/ »
~ I'4
So. Yo %, 7O % 7
OO’ $ /o &j,é&

Schick, Timo, and Hinrich Schiitze. "Exploiting Cloze-Questions for Few-Shot Text Classification and Natural Language
Inference." Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics:

Main Volume. 2021.



Prompt tuning for few-shot learning

* Prompt tuning
* The whole PLM will be fine-tuned

/5

So. Yo Y, 0, 0
OO’ S % 4 Qj/é@
Premise Mary likes pie. T
Hypothesis  Mary hates pie. LM Head
¥ "label" : [
: "entailment” T
1 : "neutral® Prompt
: "contradiction" i ? i
| tradict template: Premise ? [MASK], Hypothesis

Schick, Timo, and Hinrich Schiitze. "Exploiting Cloze-Questions for Few-Shot Text Classification and Natural Language

Inference." Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics:
Main Volume. 2021.



Prompt tuning for few-shot learning

* Prompt tuning  Standard fine-tuning
Classifier
Head
BERT BERT
(a PLM) (a PLM)
‘ Premise ? [MASK], Hypothesis Premise [SEP] Hypothesis

* | omit the [CLS] at the beginning and the [SEP] at the end

Schick, Timo, and Hinrich Schiitze. "Exploiting Cloze-Questions for Few-Shot Text Classification and Natural Language

Inference." Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics:
Main Volume. 2021.



Prompt tuning for few-shot learning

* Prompt tuning has better performance under data scarcity because
* It incorporates human knowledge
* |t introduces no new parameters

BoolQ ,

0.85 e 4

0.80
]
> £
% 0.75 T
- ™~ Standard Fine-tuni 5
: ‘tuning |5
0.70 « classifier run I~

prompting advantage
0.65 prompting run
region of comparison

0 2000 4000 6000 8000
training points
Le Scao, Teven, and Alexander M. Rush. "How many data points is a prompt worth?." Proceedings of the 2021

Conference of the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies. 2021.



Prompt tuning for few-shot learning

e How to select the verbalizer?

* 1. Manual design: require task-specific knowledge

¥ "label" : [

O : "entailment"

yes
1 : "neutral” # maybe
no

2 : "contradiction"



Prompt tuning for few-shot learning

* How to select the verbalizer?
» 2. Prototypical verbalizer: use learnable prototype vectors to represent a class,
instead of using the words in the vocabulary

Learnable prototype vector

Instance representation
%b Verbalizer
A |[[MASK]) newj Stocks Fall as Oil Hits High| .~ : wi—1 T
— | R e
A [[MASK ] newsfJArsenal Beats Everton. \’O i —
%o o +
A |[MASK]| newsfTechnology as Fashion. ‘\\ O I ,," _ _
% __,_,/Q ® - A |[MASK] news: Tokyo Olympic Daily Preview, July 26th.
NEWS t|t|e e IeaEsn i <«— Template —> <« Input >

Cui, Ganqu, et al. "Prototypical Verbalizer for Prompt-based Few-shot Tuning." Proceedings of the 60th Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers). 2022.



[CLS

A —
[MASK] —

News

Prompt tuning for few-shot learning

* How to select the verbalizer?
e 2. Prototypical verbalizer

| — -~ ~

JoAeq Suippaqui]
|j
!
T 49Ae7 Jawuojsued|
bbb
¢ 19Ae7 Jswuoysued)
N J9Aeq Jawuojsued)
|
19Ae|

Cui, Ganqu, et al. "Prototypical Verbalizer for Prompt-based Few-shot Tuning." Proceedings of the 60th Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers). 2022.

Instance
representation

|

-0

1

Jeoul



Prompt tuning for few-shot learning

e How to select the verbalizer?

* 2. Prototypical verbalizer
* Trained by contrastive learning: (1) instance-instance contrastive

— S —
- -

/ 7\b “~. Positive samples
’ —) .
\

A [[MASK]| news: Stocks Fall as Oil Hits High. /’f \3\;‘0 B
. / I \
s /1
\

/ \

/ Y 4 \

" 4 / \ o ‘l
syl v ] O \, Negativeisamples
A |[MASK]| news: Arsenal Beats Everton. / \

A |[MASK ]| news: Technology as Fashion. R O/p Y
e ® .

- -
-
e mm--

Cui, Ganqu, et al. "Prototypical Verbalizer for Prompt-based Few-shot Tuning." Proceedings of the 60th Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers). 2022.



Prompt tuning for few-shot learning

e How to select the verbalizer?

e 2. Prototypical verbalizer
* Trained by contrastive learning: (2) instance-prototype contrastive

— S —
- -

| / ,7\2.)‘ Positive sample
A |[MASK] news: Stocks Fall as Oil Hits High. . 7x
¢ \

/
U
' ; , ‘ “

i : ,', \ Negative samples
A |[MASK]| news: Arsenal Beats Everton. / |

I
I
J
|
\

A |[MASK ]| news: Technology as Fashion. R ‘O/Q 4
i ®

-
-~ -

Cui, Ganqu, et al. "Prototypical Verbalizer for Prompt-based Few-shot Tuning." Proceedings of the 60th Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers). 2022.



Prompt tuning for few-shot learning

* How to select the verbalizer?
e 2. Prototypical verbalizer

* Inference by finding the prototype that is most similar with the testing data’s instance

representation

e cooBRRRE. - Verbalizer Labels
A [[MASK] news: Stocks Fall as Oil Hits High. £ ® K[ Y Word
/ \ Yo [ * Tech
/ ® ) D¢ | -4-1---» Sports
A |[MASK ]| news: Arsenal Beats m Cosine sim. ‘: —
'\‘ * @) @ ','
| P

A |I[MASK]J news

-
e -

<«— Template —

Tokyo Olympic Daily Preview, July 26th.
«—— Testing sample ——

Cui, Ganqu, et al. "Prototypical Verbalizer for Prompt-based Few-shot Tuning." Proceedings of the 60th Annual Meeting

of the Association for Computational Linguistics (Volume 1: Long Papers). 2022.




Prompt tuning for few-shot learning

e How to select the verbalizer?

K | Method | AG DB Yahoo Few
o / 0 | ManualVerb | 75.13 67.06  43.11 20.00
K: Number of training data ManualVerb [76.67 8547 50.22 41.68
for eaCh ClaSS 1 SearchVerb . . ; .
ProtoVerb | 64.19 72.85 36.12 25.00
ManualVerb | 81.06 93.61 58.65 46.44| . .
, | SearchVerb [6582 7821 4071 3128 Manual verbalizer is good most of
ProtoVerb | 77.34 8549 4630 35.72 the time, but it requires task-
ManualVerb || 84.73 95.83 61.41 52.54 . r:
4 SearchVerb Iﬁ.43 86.40 51.58 43.10 SpeCIfIC khOWl@dge

ProtoVerb |81.65 90.91 55.08 48.28

Manual Verb [|85.85 9646 64.12_56.59]
SearchVerb | 82.17 88.41 58.64 50./8

ProtoVerb | 84.03 95.75 61.40 56.06
Manual Verb |84.74 96.05 58.77 61.17|
SearchVerb . . . .

ProtoVerb |84.48 96.30 64.35 61.29

16

Cui, Ganqu, et al. "Prototypical Verbalizer for Prompt-based Few-shot Tuning." Proceedings of the 60th Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers). 2022.



Prompt tuning for few-shot learning

e How to select the verbalizer?

K: Number of training data
for each class

e

K | Method | AG DB  Yahoo Few
0 | ManualVerb | 75.13 67.06 43.11 20.00
ManualVerb | 76.67 8547 50.22 41.68
| | SearchVerb | 41.50 60.06 2739 2088
ProtoVerb || 64.19 72.85 36.12 25.00 |
ManualVerb | 81.06 93.61 58.65 46.44
, | SearchVerb | 6582 78.21 40.71 3128
ProtoVerb || 77.34__85.49 _ 46.30 _35.72]
ManualVerb | 84.73 95.83 61.41 52.54
4 | SearchVerb | 77.43 8640 51.58 43.10
ProtoVerb [ 81.65 90.91 55.08 48.28
ManualVerb | 85.85 96.46 64.12 56.59
g | SearchVerb | 82.17 8841 58.64 50.78
ProtoVerb  [|84.03 9575 61.40  56.06|
ManualVerb | 84.74 96.05 58.77 61.17
16 | SearchVerb | 83.40 92.00 59.66 55.49
ProtoVerb  [|84.48 96.30 64.35 61.29)

Prototypical verbalizer requires no
task-specific knowledge and can
work well even when there is only
one label for each class

Cui, Ganqu, et al. "Prototypical Verbalizer for Prompt-based Few-shot Tuning." Proceedings of the 60th Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers). 2022.



Prompt tuning for few-shot learning

* Can we further improve the few-shot performance of PLMs?

* LM-BFF: better few-shot fine-tuning of language models
* Core concept:|prompt +|demonstration

MLM great (label:positive)
head (lIabel:negative) |/

Label mapping M (Y

[ [CLS] No reason to watch | It was [MASK]_.

F——— Input it Template —

Gao, Tianyu, Adam Fisch, and Dangi Chen. "Making Pre-trained Language Models Better Few-shot
Learners." Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th
International Joint Conference on Natural Language Processing (Volume 1: Long Papers). 2021.



Prompt tuning for few-shot learning

* LM-BFF

 Demonstrations can improve the performance of prompt tuning and makes
the variance smaller

MNLI MNLI-mm SNLI QNLI RTE MRPC QQP STS-B

(acc) (acc) (acc) (acc) (acc) (F1) (F1) (Pear.)
K= Standard fine-tuning 458 (64) 47.8(6.8) 48.4(4.8) 60.2(6.5) 544(3.9) 76.6(2.5) 60.7(4.3) 53.5(8.5)
16 Prompt tuning 68.3(2.3) 70.5(1.9) 77.23.7) 645(4.2) 69.1(3.6) 745(5.3) 655(5.3) 71.0(7.0)

+ demonstration (LM-BFF) 70.7 (1.3) 72.0(1.2) 79.7(1.5) 69.2(1.9) 68.7(2.3) 77.8(2.0) 698(1.8) 73.5(.1)

Fine-tuning (full)! 89.8 89.5 92.6 93.3 80.9 91.4 81.7 91.9

Gao, Tianyu, Adam Fisch, and Dangi Chen. "Making Pre-trained Language Models Better Few-shot
Learners." Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th
International Joint Conference on Natural Language Processing (Volume 1: Long Papers). 2021.



Prompt tuning for few-shot learning

* Question: What's the difference between prompting and probing

e Answer:

* The concept of “prompting” is first used in recent NLP community for probing
the factual knowledge of a PLM

Prompts — Query Answer
Francesco Bartolomeo Conti was bornin . Florence
Adolphe Adam died in : Paris
English bulldog is a subclass of dog
The official language of Mauritiusis English
Patrick Oboya plays in __ position. midfielder
Hamburg Airport is named after . Hamburg

Petroni, Fabio, et al. "Language Models as Knowledge Bases?." Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing
(EMNLP-1JCNLP). 2019.



Prompt tuning for few-shot learning

* Question: What's the difference between prompting and probing

e Answer:

* Probing is the process of exploring what knowledge is encoded in the PLM.
PLMs are often fixed during probing.

* Prompting means using natural language to query the PLM, perhaps for the
downstream task. PLM can be fine-tuned during prompting.

* The purpose of prompting and probing are different.

Petroni, Fabio, et al. "Language Models as Knowledge Bases?." Proceedings of the 2019 Conference on Empirical

Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing
(EMNLP-1JCNLP). 2019.



2022 AACL-UCNLP

Part 5:

How do PLMs work:

Using PLMs with different amounts of data
5-3: Semi-supervised learning with PLMs



Semi-supervised learning with PLMs

* Semi-Supervised learning: We have some labeled training data and a
large amount of unlabeled data

* Core idea: use the labeled data to train a good model and use that
model to label the unlabeled data

BERE
Pre-trained e 3 D2
Fogmee D e+ 8L

Labeled data
of target task

Unlabeled data Unlabeled data

of target task with pseudo-
label



Semi-supervised learning with PLMs: PET

 Pattern-Exploiting Training (PET)

e Step 1: Use different prompts and verbalizer to prompt-tune different PLMs
on the labeled dataset

Premise ? [MASK], Hypothesis - Prompt -
ves Tune
+ BERT ' BERT

maybe
no
“ Premise “ ? [MASK]. “ Hypothesis “ - Promet LM Head
Tune
true + #
inconclusive BERT BERT
false

Schick, Timo, and Hinrich Schitze. "Exploiting Cloze-Questions for Few-Shot Text Classification and Natural Language
Inference." Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics:
Main Volume. 2021.



Semi-supervised learning with PLMs: PET

 Pattern-Exploiting Training (PET)

e Step 2: Predict the unlabeled dataset and combine the predictions from
different models

: . :
Premise ?[MASK], Hypothesis - Predictl I I

-- E BERT )
S %I_ﬁr_bLj maybe 0o 1 2
A
+ =l 8
“Premise “ ? [MASK]. “ Hypothesis “
| [ ] vp | LM Head Predict 0O 1 2
true
. + BERT =4 W Soft
inconclusive label
false 2

Schick, Timo, and Hinrich Schiitze. "Exploiting Cloze-Questions for Few-Shot Text Classification and Natural Language

Inference." Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics:
Main Volume. 2021.



Semi-supervised learning with PLMs: PET
 Pattern-Exploiting Training (PET)
» Step 3: Use a PLM with classifier head to train on the soft-labeled data set

Classifier
Head

b.. 4 l I * (aBEﬁ/I)

(Originally) Soft label
Unlabeled data Premise [SEP] Hypothesis

Schick, Timo, and Hinrich Schiitze. "Exploiting Cloze-Questions for Few-Shot Text Classification and Natural Language

Inference." Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics:
Main Volume. 2021.



Semi-supervised learning with PLMs: PET

 Pattern-Exploiting Training (PET)

e Experiment results

Examples Method Yelp AG’s Yahoo MNLI (m/mm)
supervised 21.1 +16 250401  10.1 £0.1  34.2 +2.1/34.1 2.0
/ 7| =10 PET 529 +0.1  87.5+00 63.8+02 41.8 +0.1/41.5 402
|T|: # of supervised 448 +27  82.1 +25 525431 456 +1.8/47.6 +24
labeled 7| =50 PET 60.0 +0.1  86.3 0.0 66.2 +0.1  63.9 +0.0/64.2 0.0
samples
supervised 53.0+3.1  86.0+07 629 +09 479 +28/51.2 426
7| =100  PET 61.9 +00 883 +0.1 692 +00 74.7 +03/75.9 +0.4
7| = 1000 supervised 63.0 £05 86.9 04  70.5 +03  73.1 +0.2/74.8 +0.3
o PET 64.8 +0.1 869 +02 72.7 +0.0 85.3 +0.2/85.5 +04

Schick, Timo, and Hinrich Schiitze. "Exploiting Cloze-Questions for Few-Shot Text Classification and Natural Language
Inference." Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics:

Main Volume. 2021.



Semi-supervised learning with PLMs: STraTa

* Self-Training with Task
Augmentation (STraTA)

e Self-training: use the model’s Self-training
prediction on the unlabeled
dataset as pseudo-label

e How to initialize the models is

: ..&

critical to the performance e B
Data Data

Use a byoad
\ SN @ distribl]tion

v e
Student | . Repeat until
Model convergence

Vu, Tu, et al. "STraTA: Self-Training with Task Augmentation for Better Few-shot Learning." Proceedings of the 2021
Conference on Empirical Methods in Natural Language Processing. 2021.




Semi-supervised learning with PLMSs: STraTa
 Self-Training with Task Augmentation (STraTA)

* Task augmentation: use unlabeled data to generate an NLI dataset, and fine-
tuned on the NLI dataset as the intermediate task to obtain the base model

Task Augmentation

Pre-trained W Intermediate-
Language Model | task model

4

Task-specific Data Synthetic
Unlabeled - »EelLE Ul Rl NLI
Texts Model Dataset

Vu, Tu, et al. "STraTA: Self-Training with Task Augmentation for Better Few-shot Learning." Proceedings of the 2021
Conference on Empirical Methods in Natural Language Processing. 2021.



Semi-supervised learning with PLMs: STraTa

 Self-Training with Task Augmentation (STraTA)

* Task augmentation: sentiment classification as the target task

e Step 1: Train an NLI data generator using another labeled NLI dataset using a generative
language model

Hypothesis

t

Generative language model

(T5)

Additional labeled %%é ?

NLI| dataset entailment Premise

Vu, Tu, et al. "STraTA: Self-Training with Task Augmentation for Better Few-shot Learning." Proceedings of the 2021
Conference on Empirical Methods in Natural Language Processing. 2021.



Semi-supervised learning with PLMs: STraTa

 Self-Training with Task Augmentation (STraTA)

* Task augmentation: sentiment classification as the target task

e Step 2: Use the trained data generator to generate NLI dataset using the in-domain
unlabeled data

Hypothesis

t

Labels of NLI NLI data generator model Unlabeled sentiment
classification dataset

entailment

. Sample 1
contradiction - —) entailment % = __—Bl

neutral t

Vu, Tu, et al. "STraTA: Self-Training with Task Augmentation for Better Few-shot Learning." Proceedings of the 2021
Conference on Empirical Methods in Natural Language Processing. 2021.



Semi-supervised learning with PLMs: STraTa

 Self-Training with Task Augmentation (STraTA)

* Task augmentation: sentiment classification as the target task

e Step 2: Use the trained data generator to generate NLI dataset using the in-domain
unlabeled data

the cast includes british actors.

t

Labels of NLI NLI data generator model Unlabeled sentiment
classification dataset

Sample : t . . = |_=Q =
r —> entailment g cast of a-list brit actors =

neutral t =

entailment

contradiction

7 |l

Vu, Tu, et al. "STraTA: Self-Training with Task Augmentation for Better Few-shot Learning." Proceedings of the 2021
Conference on Empirical Methods in Natural Language Processing. 2021.



Semi-supervised learning with PLMs: STraTa

 Self-Training with Task Augmentation (STraTA)

* Task augmentation: sentiment classification as the target task

e Step 3: Use the generated in-domain NLI dataset to fine-tune an NLI model. The fine-
tuned model is used to initialize the teacher model and student model in self-training

The
unlabeled
data
contradiction ||=| |Hypothesis
Fine-tune
entailment||=| |Hypothesis m— Pre-trained Language Model
neutral||=| |Hypothesis

Vu, Tu, et al. "STraTA: Self-Training with Task Augmentation for Better Few-shot Learning." Proceedings of the 2021
Conference on Empirical Methods in Natural Language Processing. 2021.



Semi-supervised learning with PLMs: STraTa

 Self-Training with Task Augmentation (STraTA)

* Task augmentation: using sentiment classification as an example

e Step 3: Use the generated in-domain NLI dataset to fine-tune an NLI model. The fine-
tuned model is used to initialize the teacher model and student model in self-training

Task Augmentation Self-training
Teacher
Model "
' Inference .
i
\ Pseudo-labeled
Pre-trained Intermediate Data
Language ModelJ -Task Model : : 3
'y : Use a broad
: Sessssscesses @............: distribution ’._...
Task-specific Data Synthetic AR
Unlabeled ---»feENEIEHGLE P NLI Student | . Repeat until
Texts Model Dataset Model convergence

Vu, Tu, et al. "STraTA: Self-Training with Task Augmentation for Better Few-shot Learning." Proceedings of the 2021
Conference on Empirical Methods in Natural Language Processing. 2021.



Semi-supervised learning with PLMs: STraTa

 Self-Training with Task Augmentation (STraTA)

SST-2
90—'—- o o] 5] e 2] M
85 o
o/
80 /

Accuracy
S B

8 16 32 64 128 256 512

95

90

80

75

70

65

SciTail

8

- BERTBASE
—m— BERTpgase + STraTA
BERTgase W/ 27K examples

16 32 64 128 256 512

# labeled examples per class

Vu, Tu, et al. "STraTA: Self-Training with Task Augmentation for Better Few-shot Learning." Proceedings of the 2021

Conference on Empirical Methods in Natural Language Processing. 2021.



2022 AACL-UCNLP

Part 5:

How do PLMs work:

Using PLMs with different amounts of data
5-4: Zero-shot learning



/ero-shot learning

e Zero-shot inference: inference on the downstream task without any
training data

* If you don’t have training data, then we need a model that can zero-
shot inference on downstream tasks

Pre-trained Language Model

Training data



/ero-shot learning

* GPT-3 shows that zero-shot (with task description) is possible

100, Aggregate Performance Across Benchmarks

Few Shot
—e— One Shot
80 —e— Zero Shot

Zero-shot

The model predicts the answer given only a natural language
description of the task. No gradient updates are performed.

> 60
@©
5
g
Translate English to French: 40
cheese => 20
0
0.1B 04B 08B 13B 26B  6.7B 13B 175B

Parameters in LM (Billions)

Brown, Tom, et al. "Language models are few-shot learners." Advances in neural information processing systems 33
(2020): 1877-1901.



/Zero-shot learning

e Question: Where does this zero-shot ability spring from?

 Hypothesis: during pre-training, the training datasets implicitly
contains a mixture of different tasks

° QA
Q: | got 4 papers. Should | expect this load in the future?

A: The average monthly load for reviewers should be much closer to 2, but in certain periods (close to
large conferences), it's possible that the load is higher.

* Summarization
Finetuned Language Models are Zero-Shot Learners =

Jason Wei, Maarten Bosma, Vincent Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du, Andrew M. Dai, Quoc V Le
29 Sept 2021 (modified: 10 Feb 2022)  ICLR 2022 Oral  Readers: @@ Everyone  Show Bibtex  Show Revisions
Keywords: natural language processing, zero-shot learning, language models

Abstract: This paper explores a simple method for improving the zero-shot learning abilities of language models. We show that instruction tuning—finetuning language models on a collection of
datasets described via instructions—substantially improves zero-shot performance on unseen tasks. We take a 137B parameter pretrained language model and instruction tune it on over 60 NLP
datasets verbalized via natural language instruction templates. We evaluate this instruction-tuned model, which we call FLAN, on unseen task types. FLAN substantially improves the performance of its
unmodified counterpart and surpasses zero-shot 175B GPT-3 on 20 of 25 datasets that we evaluate. FLAN even outperforms few-shot GPT-3 by a large margin on ANLI, RTE, BoolQ, AI2-ARC, OpenbookQA,
and StoryCloze. Ablation studies reveal that number of finetuning datasets, model scale, and natural language instructions are key to the success of instruction tuning.

I One-sentence Summary:l "Instruction tuning", which finetunes language models on a collection of tasks described via instructions, substantially boosts zero-shot performance on unseen tasks.

Wei, Jason, et al. "Finetuned Language Models are Zero-Shot Learners." International Conference on Learning
Representations. 2022.



/ero-shot learning

* Hypothesis: multi-task training enables zero-shot generalization
* Why not train a model with multi-task learning on a bunch of dataset?

Summarization

The picture appeared on the wall of a
Poundland store on Whymark Avenue [...] How
would you rephrase that in a few words?

Graffiti artist Banksy
is believed to be
behind [...]

Sentiment Analysis

Review: We came here on a Saturday night

|- d luckily i ' ked
Multitask | sty jog € e proes e £

Intermedlate'taSk to 5, I would give this a
fine-tuning

Question Answering

I know that the answer to “What team did
the Panthers defeat?” is in “The Panthers
finished the regular season [...]". Can
you tell me what it is?

Multi-task training

Zero-shot generalization

Ze ro-S h Ot Natural Language Inference

Suppose “The banker contacted the professors

Genera||zat|on [ and the athlete”. Can we infer that "The

banker contacted the professors"?

Sanh, Victor, et al. "Multitask Prompted Training Enables Zero-Shot Task Generalization." The Tenth International
Conference on Learning Representations. 2022.



/ero-shot learning

* Intermediate-task  fine-

tuning with some types of
tasks

e Zero-shot inference on
other types of tasks

Sanh, Victor, et al. "Multitask Prompted Training Enables Zero-Shot Task Generalization."

Conference on Learning Representations. 2022.

N

J

N

Sentence Completion
\' COPA |
| HellaSwag |
| StoryCloze |

N

Natural Language
Inference

ANLI

N

Coreference
Resolution
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e N ( \
Multiple-Choice QA Closed-Book QA Structure-To-Text
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DREAM Wiki QA Wiki Bio
QuAIL . a
e N
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. /

The Tenth International

Word Sense
Disambiguation
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Code Description
Conceptual
Hindu Knowledge
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Language ID
Logic Grid

jLogicaI Deduction |

Misconceptions

Movie Dialog
j Novel Concepts
' Strategy QA
Syllogisms
\ Vitamin C

\‘ Winowhy

&

Zero-shot tasks




/ero-shot learning

 Sometimes achieves performance better than GPT-3 (175B
parameters) with only 11B parameters

80

60

40

20

Sanh, Victor, et al. "Multitask Prompted Training Enables Zero-Shot Task Generalization."

Natural Language Inference

RTE CB ANLIRI ANLI R2 ANLIR3
50 50 50 . .
" ? ° N . R * Different points represents
40 40 40
. , } .
“ P $ . 0 §e cc0 different prompts
) o 0 0 e Variance due to prompts
20 20 10 10 10
) ) ) ) ) can be large
Coreference Resolution Sentence Completion Word Sense
WSC Winogrande COPA StoryCloze HellaSwag WiC
80 100 100 100 80
' {
~ . 60 g % 80 80 °® 60 v
® e 60 ‘ 60 60 o
® 40 40
40 40 40
20 e “ 20
20 20 20
0 0 0 0 0 -
GPT-3 (6.7B) GPT-3 (13B) GPT-3 (175B) T5+LM (11B) TO (11B)

Conference on Learning Representations. 2022.

The Tenth International



/ero-shot learning

* What language model architecture and pre-training objective work
best for zero-shot generalization?

Full LM = it is a funny movie <sos>  funny movie <sos> a funny

(FLM) | T T T

Prefix LM
(PLM)
: FLM PLM MLM
Masked LM t
(MLM)
Objective T T T
<bos> it is a funny movie <bos>itis a it is [MASK] movie

Wang, Thomas, et al. "What Language Model Architecture and Pretraining Objective Work Best for Zero-Shot
Generalization?." arXiv preprint arXiv:2204.05832 (2022).



/ero-shot learning

* What language model architecture
best for zero-shot generalization?

Causal Decoder Causal Decoder i
(CD) g ~\ §
2k BB
) 10000
Non-Causal b S ) b
Decoder (ND) E ° § ;
\ (&) — % .
J g g
( 3 | N
Encoder-Decoder - =
(ED)
\ J I am a causal decoder
Architecture Decoder

Non-causal Decoder

)

a

0

NC decoder

Decoder

Decoder

Encoder

and pre-training objective work

a NC decoder <sos>

Encoder-Decoder T

0
)

an  encoder decoder

PLM

am

I

Encoder Decoder T
<bos>iam
Prefix

Wang, Thomas, et al. "What Language Model Architecture and Pretraining Objective Work Best for Zero-Shot

Generalization?." arXiv preprint arXiv:2204.05832 (2022).



/ero-shot learning

* What language model architecture and pre-training objective work
best for zero-shot generalization?

TO-Eval
masked
Iangque Iangque .
0.65 "2“;1“9 “‘:’f‘g"g Baselines
—— Random
¢ ED:MLM (1.3T) + ED:PLM (131B) [T5-LM]
T 0.60 * ED:MLM (1.3T) + ED:PLM (131B) + ED:MTF (13B) [TO]
o : \
g CD:FLM (168B) Causal Decoder _ Full LM
Q 055 ° Pretrained with LM (CD) IR (FLM)
S CD:FLM (168B) + CD:MTF (13B)
§ ND:PLM (168B) + ND:MTF (13B) Non-Causal | | Prefix LM
2 050 . ED:PLM (168B) + ED:MTF (13B) Decoder (ND) (PLM)
(] . J .
(%]
= Pretrained with MLM . L .
S 0.45 4 CD:MLM (168B) + CD:MTF (13B) Encoder-Decoder Masked LM
s | 4 ND:MLM (168B) + ND:MTF (13B) (ED) (MLM)
3 ¢ ED:MLM (168B) + ED:MTF (13B) 7 —
= Architecture Objective
0.40
MTF: Multi-Task Fine-tuning

Wang, Thomas, et al. "What Language Model Architecture and Pretraining Objective Work Best for Zero-Shot
Generalization?." arXiv preprint arXiv:2204.05832 (2022).



/ero-shot learning

* What language model architecture and pre-training objective work
best for zero-shot generalization?

TO-Eval
0.65 :?Eg‘jt‘ﬁ; ',?.E%/‘SES Baselines
—— Random
[ ¢ ED:MLM (1.3T) + ED:PLM (131B) [T5-LM]
T—g‘ 0.60 * ED:MLM (1.3T) + ED:PLM (131B) + ED:MTF (13B) [TO]
2 CD:FLM (168B)
b - -
§055 ¢ Pretrained with LM
g CD:FLM (168B) + CD:MTF (13B)
© ND:PLM (168B) + ND:MTF (13B)
S 0.50 < ED:PLM (168B) + ED:MTF (13B)
(]
% Pretrained with MLM
~ 045 4 CD:MLM (168B) + CD:MTF (13B)
§ ' )i 4 ND:MLM (168B) + ND:MTF (13B) Encoder-decoder model pre-
D ¢ ED:MLM (168B) + ED:MTF (13B) < . . .
= trained using MLM is the best
MTF: Multi-Task Fine-tuning

Wang, Thomas, et al. "What Language Model Architecture and Pretraining Objective Work Best for Zero-Shot
Generalization?." arXiv preprint arXiv:2204.05832 (2022).
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Using PLMs with different amount of data

* PLMs can be used with different amount of labeled and unlabeled
data
* Special designs need to be made under different scenarios

23
os HHREEE
S Bhgith

L

Target task dataset Datasets of other tasks Data related to target task
(labeled) (labeled) (Unlabeled)



Using PLMs with different amount of data

* Use natural language prompts and add scenario-specific designs

* [CLS] The spring break is coming soon. Is it true that the
spring break was over? >>> no
e [CLS] | am going to have dinner. Is it true that | am going

to eat something? >>> yes
e [CLS] Mary likes pie. Is it true that Mary hates pie. [SEP]

K>>>? /
[— P
&
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Conclusion

* Researchers have studied why PLMs are useful from many aspects

* Contrastive learning is a powerful method to obtain high quality
sentence embedding in an unsupervised way

* Parameter-efficient fine-tuning can achieve comparable performance
to full-model fine-tuning

* PLMs can be used in with different amount of labeled and unlabeled
datasets, and incorporating human knowledge is very critical the

performance



Future work

* Why PLMs work is not completely answered vyet, including the
mathematical theory / learning theory behind the PLMs

* How can we create better negative and positive samples for
contrastive learning in an unsupervised way?

* How can we combine parameter-efficient fine-tuning methods with
other methods (pruning, compression, quantization) to further
reduce the parameters?

* How does those few-shot learning methods perform domain-specific
datasets?

* How trust-worthy are the prediction of PLMs, especially in few-shot
and zero-shot?



Future work

* Why is the variance between different prompts very large for certain
tasks? Does this imply the PLM fail to understand human language?

* How do we continuously adapt PLMs to different domain and
datasets from different time?

Still a long way to go!
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Recent Advances in PLMs:
Why Do They Work and
How to Use Them

Any questions?

Part 1 Introduction

Part 2 Why do PLMs work

Part 3 How to Use PLMs: Contrastive learning
Part 4 Parameter-efficient finetuning

Part 5 Using PLMs with different amounts of data




